Passos Dário
CEOT - Center for Electronics, Optoelectronics and Telecommunications, Universidade do Algarve, Campus de Gambelas, 8005-189 Faro, Portugal; Universidade do Algarve, Faculdade de Ciências e Tecnologia, Departamento de Física, Campus de Gambelas, 8005-189, Faro, Portugal; CISCA - Algarve Cyber-Physical Systems Research Center, Universidade do Algarve, Campus de Gambelas, 8005-189 Faro, Portugal.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Sep 5;337:126068. doi: 10.1016/j.saa.2025.126068. Epub 2025 Mar 19.
One of the criticisms that deep chemometric models usually face is their lack of explainability. In this work, three different explainability methods (Regression Coefficients, LIME and SHAP) are applied to different convolutional neural network (CNN) architectures, previously optimized for the task of multifruit dry matter content prediction based on NIR spectra. Additionally, a convolutional filter characterization is also performed to help clarify the type of modelling performed by the convolutional layers. The analysis allowed to extract information about the wavelength bands relevant to the models' performance (feature importance) and to understand how different convolutional layer topologies transform the spectra leading to three types of modelling: data driven pre-processing, dimensionality reduction and hierarchical feature extraction. Feature importance analysis indicates that the relevant spectral bands used by the different CNN architectures for prediction of dry matter is basically the same. They are the same as the bands relevant to PLS and these bands can be attributed to specific known vibrational groups. Moreover, in the context of the multifruit prediction task, the analysis also points out that CNNs tend to identify and use spectral features that are informative across different fruit spectra, much like domain-invariant features identified by di-CovSel variable selection.
深度化学计量模型通常面临的批评之一是缺乏可解释性。在这项工作中,三种不同的可解释性方法(回归系数、LIME和SHAP)被应用于不同的卷积神经网络(CNN)架构,这些架构之前已针对基于近红外光谱的多种水果干物质含量预测任务进行了优化。此外,还进行了卷积滤波器表征,以帮助阐明卷积层执行的建模类型。该分析能够提取与模型性能相关的波段信息(特征重要性),并了解不同的卷积层拓扑结构如何变换光谱,从而导致三种类型的建模:数据驱动的预处理、降维和分层特征提取。特征重要性分析表明,不同的CNN架构用于预测干物质的相关光谱带基本相同。它们与偏最小二乘法(PLS)相关的波段相同,并且这些波段可归因于特定的已知振动基团。此外,在多种水果预测任务的背景下,分析还指出,CNN倾向于识别和使用在不同水果光谱中具有信息性的光谱特征,这与通过双协方差选择(di-CovSel)变量选择识别的域不变特征非常相似。