Suppr超能文献

使用CARMA-X在混合人群中进行精细定位及其在拉丁美洲研究中的应用。

Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.

作者信息

Yang Zikun, Wang Chen, Posadas-Garcia Yuridia Selene, Añorve-Garibay Valeria, Vardarajan Badri, Estrada Andrés Moreno, Sohail Mashaal, Mayeux Richard, Ionita-Laza Iuliana

机构信息

Department of Biostatistics, Columbia University, New York, NY, USA.

Department of Biostatistics, Columbia University, New York, NY, USA.

出版信息

Am J Hum Genet. 2025 May 1;112(5):1215-1232. doi: 10.1016/j.ajhg.2025.02.020. Epub 2025 Mar 26.

Abstract

Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.

摘要

在祖先背景多样的人群中开展全基因组关联研究(GWAS)正在迅速扩展,为发现新基因以及提高遗传研究结果在非欧洲个体中的实用性带来了独特机遇。一种在GWAS位点识别假定因果变异的常用技术是通过统计精细定位。尽管付出了巨大努力,但精细定位仍然是一项极具挑战性的任务,即使在单一、同质人群的相对简单研究场景中也是如此。对于有混合个体的研究,如拉丁美洲和加勒比地区的研究,基因发现方法仍然有限。在此,我们提出了一种用于混合人群精细定位的贝叶斯模型CARMA-X,该模型解决了混合个体面临的一些独特挑战。所提出的方法包括一种连锁不平衡(LD)矩阵估计方法,该方法考虑了混合个体的小参考面板、人群间的异质性和跨祖先LD,以及一种贝叶斯假设检验,当依靠适度规模的外部参考面板进行LD估计时,该检验可实现稳健的精细定位。通过模拟,我们将性能与最近提出的多祖先研究精细定位方法进行了比较,结果表明所提出的模型在控制错误发现的同时提供了更高的功效,特别是在使用样本外LD矩阵时。我们通过应用于两项拉丁美洲遗传研究进一步阐述了我们的方法,这两项研究分别是多米尼加共和国的阿尔茨海默病遗传影响家族研究(EFIGA)和墨西哥生物银行,在这些研究中,我们展示了通过对假定因果变异和基因进行优先级排序来建模特定祖先效应的好处,包括一些由非洲和美洲原住民祖先的特定祖先效应驱动的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验