Azzaoui Khalil, Aaddouz Mohamed, Jodeh Shehdeh, Hammouti Belkheir, Hanbali Ghadir, Sabbahi Rachid, Kaya Savaş, Katin Konstantin P, Merzouki Mohammed, Alshahateet Solhe F, Alanazi Mohammed M, Rhazi Larbi, Chakir Abdelkhaleq
Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco.
Euromed University of Fes, UEMF, Fes, Morocco.
Sci Rep. 2025 Mar 27;15(1):10665. doi: 10.1038/s41598-025-89890-5.
This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/cellulose nanocomposites, which have potential biomedical and environmental applications, removal of dyes. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and cellulose. Over the past decade, calcium phosphate composites and similar biomaterials have seen commercial use in bone substitution and allograft applications. These biomaterial composites, which include an organic matrix and an inorganic mineral, have been developed. The principal inorganic component is hydroxyapatite, with the organic matrix made of cellulose derived from Esparto "STIPA TENACISSIMA TENDRARA" which covers the territory of Tendrara, from Eastern-Morocco. The final product received extensive characterization using techniques such as FTIR, XRD, thermal analysis, Morphological studies, XPS, 31P NMR, AFM, SEM, Ligand preparation and Prediction of ADME/Toxicity Properties, with SEM micrographs revealing the product's nanometric size, XRD analysis show that a significant hydrogen bonding interaction between HAp and cellulose may have occurred as the cellulose peak intensity steadily decreased with HAp level. Concurrently, enterprises have been recorded discharging substantial amounts of methylene blue into natural water sources, raising worries about human health and ecosystems. Computational analysis revealed the compound's properties, revealing potential side effects and environmental risks. Toxicity tests have identified considerable hazards, particularly for cardiac problems, necessitating cautious use. Theoretical computations confirmed the composites' high contact strength, particularly when HAp, Ce, and HAp/Ce were deprotonated. These findings are consistent with experimental evidence. Theoretical calculations utilizing Monte Carlo (MC) and Molecular Dynamic (MD) simulation models revealed that the produced foams had an outstanding affinity for methylene blue, as shown by strongly negative adsorption energy values indicating strong interactions with adsorbate surfaces. Based on the calculated chemical hardness values for the adsorbent, adsorbate, and the complex system, it can be inferred that the adsorbent system demonstrates a higher level of hardness in comparison to the adsorbate.
本文提出了一种用于设计和合成羟基磷灰石/纤维素纳米复合材料的新型化学信息学方法,该纳米复合材料在生物医学和环境应用(如染料去除)方面具有潜力。通过共沉淀法以不同比例的羟基磷灰石和纤维素合成纳米复合材料。在过去十年中,磷酸钙复合材料及类似生物材料已在骨替代和同种异体移植应用中实现商业用途。这些生物材料复合材料包括有机基质和无机矿物质,已得到开发。主要无机成分是羟基磷灰石,有机基质由源自覆盖摩洛哥东部滕德拉拉地区的西班牙草(STIPA TENACISSIMA TENDRARA)的纤维素制成。最终产品使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、热分析、形态学研究、X射线光电子能谱(XPS)、磷-31核磁共振(31P NMR)、原子力显微镜(AFM)、扫描电子显微镜(SEM)、配体制备以及药物代谢和毒性性质预测等技术进行了广泛表征,扫描电子显微镜照片显示产品具有纳米尺寸,X射线衍射分析表明随着羟基磷灰石含量增加纤维素峰强度稳步下降,可能在羟基磷灰石和纤维素之间发生了显著的氢键相互作用。同时,有记录显示企业向天然水源大量排放亚甲基蓝,引发了对人类健康和生态系统的担忧。计算分析揭示了该化合物的性质,显示出潜在的副作用和环境风险。毒性测试确定了相当大的危害,尤其是对心脏问题,因此需要谨慎使用。理论计算证实了复合材料具有高接触强度,特别是当羟基磷灰石、铈以及羟基磷灰石/铈去质子化时。这些发现与实验证据一致。利用蒙特卡罗(MC)和分子动力学(MD)模拟模型进行的理论计算表明,所制备的泡沫对亚甲基蓝具有出色的亲和力,强烈的负吸附能值表明与吸附质表面有强相互作用。根据计算出的吸附剂、吸附质和复合体系的化学硬度值,可以推断吸附剂体系相对于吸附质表现出更高的硬度水平。