Suppr超能文献

结合混合柯尔莫哥洛夫-阿诺德网络和增广拉格朗日函数的物理信息神经网络用于求解偏微分方程

Physics-informed neural networks with hybrid Kolmogorov-Arnold network and augmented Lagrangian function for solving partial differential equations.

作者信息

Zhang Zhaoyang, Wang Qingwang, Zhang Yinxing, Shen Tao, Zhang Weiyi

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China.

School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.

出版信息

Sci Rep. 2025 Mar 27;15(1):10523. doi: 10.1038/s41598-025-92900-1.

Abstract

Physics-informed neural networks (PINNs) have emerged as a fundamental approach within deep learning for the resolution of partial differential equations (PDEs). Nevertheless, conventional multilayer perceptrons (MLPs) are characterized by a lack of interpretability and encounter the spectral bias problem, which diminishes their accuracy and interpretability when used as an approximation function within the diverse forms of PINNs. Moreover, these methods are susceptible to the over-inflation of penalty factors during optimization, potentially leading to pathological optimization with an imbalance between various constraints. In this study, we are inspired by the Kolmogorov-Arnold network (KAN) to address mathematical physics problems and introduce a hybrid encoder-decoder model to tackle these challenges, termed AL-PKAN. Specifically, the proposed model initially encodes the interdependencies of input sequences into a high-dimensional latent space through the gated recurrent unit (GRU) module. Subsequently, the KAN module is employed to disintegrate the multivariate function within the latent space into a set of trainable univariate activation functions, formulated as linear combinations of B-spline functions for the purpose of spline interpolation of the estimated function. Furthermore, we formulate an augmented Lagrangian function to redefine the loss function of the proposed model, which incorporates initial and boundary conditions into the Lagrangian multiplier terms, rendering the penalty factors and Lagrangian multipliers as learnable parameters that facilitate the dynamic modulation of the balance among various constraint terms. Ultimately, the proposed model exhibits remarkable accuracy and generalizability in a series of benchmark experiments, thereby highlighting the promising capabilities and application horizons of KAN within PINNs.

摘要

物理信息神经网络(PINNs)已成为深度学习中用于求解偏微分方程(PDEs)的一种基本方法。然而,传统的多层感知器(MLPs)缺乏可解释性,并存在频谱偏差问题,当在各种形式的PINNs中用作近似函数时,会降低其准确性和可解释性。此外,这些方法在优化过程中容易出现惩罚因子过度膨胀的情况,可能导致各种约束之间失衡的病态优化。在本研究中,我们受柯尔莫哥洛夫 - 阿诺德网络(KAN)启发来解决数学物理问题,并引入一种混合编码器 - 解码器模型来应对这些挑战,称为AL - PKAN。具体而言,所提出的模型首先通过门控循环单元(GRU)模块将输入序列的相互依赖关系编码到高维潜在空间中。随后,使用KAN模块将潜在空间内的多元函数分解为一组可训练的单变量激活函数,这些函数被表示为B样条函数的线性组合,用于对估计函数进行样条插值。此外,我们制定了一个增广拉格朗日函数来重新定义所提出模型的损失函数,该函数将初始条件和边界条件纳入拉格朗日乘子项中,使惩罚因子和拉格朗日乘子成为可学习参数,便于动态调节各种约束项之间的平衡。最终,所提出的模型在一系列基准实验中表现出显著的准确性和泛化能力,从而突出了KAN在PINNs中的潜在能力和应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93a7/11950322/eeb1a84acc5b/41598_2025_92900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验