Toscano Juan Diego, Käufer Theo, Wang Zhibo, Maxey Martin, Cierpka Christian, Karniadakis George Em
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau, Germany.
Sci Adv. 2025 May 9;11(19):eads5236. doi: 10.1126/sciadv.ads5236. Epub 2025 May 7.
We propose the artificial intelligence velocimetry-thermometry (AIVT) method to reconstruct a continuous and differentiable representation of the temperature and velocity in turbulent convection from measured three-dimensional (3D) velocity data. AIVT is based on physics-informed Kolmogorov-Arnold networks and trained by optimizing a loss function that minimizes residuals of the velocity data, boundary conditions, and governing equations. We apply AIVT to a set of simultaneously measured 3D temperature and velocity data of Rayleigh-Bénard convection, obtained by combining particle image thermometry and Lagrangian particle tracking. This enables us to directly compare machine learning results to true volumetric, simultaneous temperature and velocity measurements. We demonstrate that AIVT can reconstruct and infer continuous, instantaneous velocity and temperature fields and their gradients from sparse experimental data at a high resolution, providing an additional approach for understanding thermal turbulence.
我们提出了人工智能测速-测温(AIVT)方法,用于根据测量的三维(3D)速度数据重建湍流对流中温度和速度的连续且可微的表示。AIVT基于物理信息Kolmogorov-Arnold网络,并通过优化损失函数进行训练,该损失函数可使速度数据、边界条件和控制方程的残差最小化。我们将AIVT应用于通过结合粒子图像测温法和拉格朗日粒子跟踪获得的一组同时测量的瑞利-贝纳德对流的3D温度和速度数据。这使我们能够将机器学习结果与真实的体积、同时温度和速度测量直接进行比较。我们证明,AIVT可以从稀疏的实验数据中以高分辨率重建和推断连续的、瞬时的速度和温度场及其梯度,为理解热湍流提供了一种额外的方法。