Suppr超能文献

机器学习模型在估计沙特阿拉伯王国残疾护理辅助服务财务成本方面的有效性。

An effectiveness of machine learning models for estimate the financial cost of assistive services to disability care in the Kingdom of Saudi Arabia.

作者信息

Algahtani Obaid, Almazah Mohammed M A, Alshormani Farouq

机构信息

Department of Mathematics, College of Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.

Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, 61421, Muhyil, Saudi Arabia.

出版信息

Sci Rep. 2025 Mar 28;15(1):10675. doi: 10.1038/s41598-025-93878-6.

Abstract

As per the World Health Organization (WHO), the justifications of people with disabilities globally are restricted by physical and social barriers that exclude their full contribution to society. Constructed environment barriers can limit the availability of transportation, employment, goods and services, healthcare, and overall independent drive. The government of Saudi Arabia has applied programs and policies to enhance the quality of life for people with disabilities, including education, healthcare, and employment chances. Furthermore, they also take action to progress a few social guards that endorse public involvement and income-support plans for individuals with disabilities, besides efforts to uphold the cultural, social, political, and economic environment for accurate plans. Therefore, this study presents the Effectiveness of Machine Learning Models for estimating the Financial Cost of Assistive Services to Disability Care (EMLM-EFCASDC) technique in the KSA. The presented EMLM-EFCASDC technique mainly aims to develop a data-driven model that accurately predicts the cost of assistive services in disability care across the KSA. At first, the EMLM-EFCASDC approach utilizes Z-score normalization to preprocess the input data, ensuring that data variability is minimized for improved model accuracy. Next, an ensemble of machine learning (ML) models comprises three classifiers such as hybrid kernel extreme learning machine (HKELM), extreme gradient boosting (XGBoost), and support vector regression (SVR) for predicting the financial cost. Eventually, the modified pelican optimization algorithm (MPOA) is utilized to fine-tune the optimal hyperparameter of ensemble model parameters to achieve high predictive performance. An extensive range of simulation analyses are employed to ensure the enhanced performance of the EMLM-EFCASDC technique. The performance validation of the EMLM-EFCASDC method portrayed the least RMSLE value of 0.1154 on existing approaches in terms of diverse evaluation measures.

摘要

根据世界卫生组织(WHO)的数据,全球残疾人的权益受到身体和社会障碍的限制,这些障碍阻碍了他们对社会做出充分贡献。建筑环境障碍会限制交通、就业、商品和服务、医疗保健的可及性,以及整体的独立出行。沙特阿拉伯政府已实施各项计划和政策来提高残疾人的生活质量,包括教育、医疗保健和就业机会。此外,他们还采取行动推进一些社会保障措施,支持针对残疾人的公众参与和收入支持计划,同时努力维护有利于精准计划实施的文化、社会、政治和经济环境。因此,本研究展示了机器学习模型在沙特阿拉伯估计残疾护理辅助服务财务成本的有效性(EMLM - EFCASDC)技术。所提出的EMLM - EFCASDC技术主要旨在开发一个数据驱动的模型,该模型能够准确预测沙特阿拉伯全国残疾护理辅助服务的成本。首先,EMLM - EFCASDC方法利用Z分数归一化对输入数据进行预处理,确保数据变异性最小化,以提高模型准确性。接下来,一个机器学习(ML)模型集成包括三个分类器,如混合核极限学习机(HKELM)、极端梯度提升(XGBoost)和支持向量回归(SVR),用于预测财务成本。最后,利用改进的鹈鹕优化算法(MPOA)对集成模型参数的最优超参数进行微调,以实现高预测性能。采用了广泛的模拟分析来确保EMLM - EFCASDC技术的性能提升。EMLM - EFCASDC方法的性能验证表明,在各种评估指标方面,其均方根对称对数误差(RMSLE)值在现有方法中最低,为0.1154。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c85/11950197/437a89cdc377/41598_2025_93878_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验