Suppr超能文献

韩国儿童生长评估中使用骨龄和身体成分预测成人身高的比较。

Comparison of adult height prediction using bone age and body composition for growth assessment in Korean children.

作者信息

Jung Hae Woon, Chun Dohyun, Choi Ji Hye, Lee Jin Hyuck, Lee Kihwa, Kim Jihun, Jang Woo Young

机构信息

Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea.

College of Business Administration, Kangwon National University, Chuncheon, Gangwon-do, Korea.

出版信息

Sci Rep. 2025 Mar 27;15(1):10581. doi: 10.1038/s41598-025-94685-9.

Abstract

To compare adult height (AH) predictions using body composition-based biological age with those derived from bone age in Korean children. A multicenter, assessor-blinded, prospective study was conducted with 80 healthy children aged 7-13 years. Participants were assessed using two methods: the traditional Tanner-Whitehouse 3 (TW3) bone age method and a model based on artificial intelligence (AI), incorporating body composition metrics such as BMI, fat-free mass, and muscle mass through bioelectrical impedance analysis. The clinical equivalence between the two prediction methods was evaluated, with a non-inferiority margin of 0.661 years. The difference in predicted bone age between the AI-based method and the TW3 method was 0.04 ± 1.02 years, indicating clinical equivalence. Exploratory analysis showed a positive correlation between lean mass and bone age, suggesting that body composition metrics could reflect skeletal maturity. Therefore, the AI-based method utilizing body composition parameters was clinically equivalent to the traditional TW3 method for predicting AH. This approach offers a viable alternative for predicting adult height in pediatric populations, emphasizing the potential for integrating personalized metrics such as body composition into routine growth monitoring; however, further research is needed before it can be widely applied in clinical practice. Future studies should explore its utility in children with growth disorders and refine the model across different growth phases.

摘要

比较韩国儿童中使用基于身体成分的生物年龄预测成人身高(AH)与根据骨龄预测成人身高的情况。对80名7至13岁的健康儿童进行了一项多中心、评估者盲法的前瞻性研究。采用两种方法对参与者进行评估:传统的坦纳-怀特豪斯3(TW3)骨龄法和一种基于人工智能(AI)的模型,该模型通过生物电阻抗分析纳入了身体成分指标,如BMI、去脂体重和肌肉量。评估了两种预测方法之间的临床等效性,非劣效性界值为0.661岁。基于AI的方法与TW3方法预测的骨龄差异为0.04±1.02岁,表明具有临床等效性。探索性分析显示瘦体重与骨龄之间呈正相关,表明身体成分指标可以反映骨骼成熟度。因此,利用身体成分参数的基于AI的方法在预测成人身高方面与传统的TW3方法在临床上等效。这种方法为儿科人群预测成人身高提供了一种可行的替代方法,强调了将身体成分等个性化指标纳入常规生长监测的潜力;然而,在其能够广泛应用于临床实践之前,还需要进一步研究。未来的研究应探索其在生长障碍儿童中的效用,并在不同生长阶段完善该模型。

相似文献

8
Is TW3 height prediction more accurate than TW2? Preliminary data.
Horm Res. 2007;67(5):220-3. doi: 10.1159/000097439. Epub 2006 Nov 27.

本文引用的文献

8
Evaluation of Bone Age in Children: A Mini-Review.儿童骨龄评估:一篇综述
Front Pediatr. 2021 Mar 12;9:580314. doi: 10.3389/fped.2021.580314. eCollection 2021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验