Suppr超能文献

一种用于预测静脉-动脉体外膜肺氧合术后神经学预后的新型可解释机器学习模型。

A Novel, Interpretable Machine Learning Model to Predict Neurological Outcomes Following Venoarterial Extracorporeal Membrane Oxygenation.

作者信息

Shou Benjamin L, Leng Albert, Bachina Preetham, Kalra Andrew, Zhou Alice L, Whitman Glenn, Cho Sung-Min

机构信息

Division of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Neurocrit Care. 2025 Mar 27. doi: 10.1007/s12028-025-02233-0.

Abstract

BACKGROUND

We used machine learning models incorporating rich electronic medical record (EMR) data to predict neurological outcomes after venoarterial extracorporeal membrane oxygenation (VA-ECMO).

METHODS

This was a retrospective review of adult (≥ 18 years) patients undergoing VA-ECMO between 6/2016 and 4/2022 at a single center. The primary outcome was good neurological outcome, defined as a modified Rankin Scale score of 0 to 3, evaluated at hospital discharge. We extracted every measurement of 74 vital and laboratory values, as well as circuit and ventilator settings, from 24 h before cannulation through the entire duration of ECMO. An XGBoost model with Shapley Additive Explanations was developed and evaluated with leave-one-out cross-validation.

RESULTS

Overall, 194 patients undergoing VA-ECMO (median age 58 years, 63% male) were included. We extracted more than 14 million individual data points from the EMR. Of 194 patients, 39 patients (20%) had good neurological outcomes. Three models were generated: model A, which contained only pre-ECMO data; model B, which added data from the first 48 h of ECMO; and model C, which included data from the entire ECMO run. The leave-one-out cross-validation area under the receiver operator characteristics curves for models A, B, and C were 0.72, 0.81, and 0.90, respectively. The inclusion of on-ECMO physiologic, laboratory, and circuit data greatly improved model performance. Both modifiable and nonmodifiable variables, such as lower body mass index, lower age, higher mean arterial pressure, and higher hemoglobin, were associated with good neurological outcome.

CONCLUSIONS

An interpretable machine learning model from EMR-extracted data was able to predict neurological outcomes for patients undergoing VA-ECMO with excellent accuracy.

摘要

背景

我们使用了包含丰富电子病历(EMR)数据的机器学习模型来预测静脉-动脉体外膜肺氧合(VA-ECMO)后的神经功能结局。

方法

这是一项对2016年6月至2022年4月在单一中心接受VA-ECMO的成年(≥18岁)患者的回顾性研究。主要结局是良好的神经功能结局,定义为出院时改良Rankin量表评分为0至3。我们从插管前24小时到ECMO的整个持续时间内提取了74项生命体征和实验室值的每一项测量值,以及回路和呼吸机设置。开发了一个带有Shapley加性解释的XGBoost模型,并通过留一法交叉验证进行评估。

结果

总体而言,纳入了194例接受VA-ECMO的患者(中位年龄58岁,63%为男性)。我们从EMR中提取了超过1400万个单独的数据点。在194例患者中,39例(20%)有良好的神经功能结局。生成了三个模型:模型A,仅包含ECMO前的数据;模型B,添加了ECMO前48小时的数据;模型C,包括整个ECMO运行期间的数据。模型A、B和C的留一法交叉验证受试者工作特征曲线下面积分别为0.72、0.81和0.90。纳入ECMO期间的生理、实验室和回路数据大大提高了模型性能。可改变和不可改变的变量,如较低的体重指数、较低的年龄、较高的平均动脉压和较高的血红蛋白,都与良好的神经功能结局相关。

结论

一个从EMR提取数据的可解释机器学习模型能够以极高的准确性预测接受VA-ECMO患者的神经功能结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验