Suppr超能文献

基于人工智能的磁共振成像对实验动物脑梗死病变手动分割的比较评估

Comparative Assessment of Manual Segmentation of Cerebral Infarction Lesions in Experimental Animals Based on Magnetic Resonance Imaging Using Artificial Intelligence.

作者信息

Gubskiy I L, Namestnikova D D, Cherkashova E A, Gumin I S, Kurilo V V, Chekhonin V P, Yarygin K N

机构信息

Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.

Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.

出版信息

Bull Exp Biol Med. 2025 Feb;178(4):514-519. doi: 10.1007/s10517-025-06366-2. Epub 2025 Mar 28.

Abstract

The aim of this study was to evaluate the quality of manual segmentation of cerebral infarction lesions in experimental animals with modeled brain infarct based on magnetic resonance imaging compared to an automated artificial intelligence approach. For automated infarct segmentation, an artificial intelligence system with the Swin-UNETR architecture was used, while manual segmentation was performed by four independent researchers. It was shown that manual segmentation exhibits significant variability, especially when small brain infarct lesions are analyzed. The obtained data emphasize the need for standardizing methods and applying automated systems to improve the accuracy and reproducibility of the results.

摘要

本研究的目的是基于磁共振成像,评估与自动人工智能方法相比,在模拟脑梗死的实验动物中脑梗死病变手动分割的质量。对于自动梗死分割,使用了具有Swin-UNETR架构的人工智能系统,而手动分割由四名独立研究人员进行。结果表明,手动分割存在显著差异,尤其是在分析小脑梗死病变时。所获得的数据强调了标准化方法和应用自动系统以提高结果的准确性和可重复性的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验