Suppr超能文献

精神分裂症患者在不同认知任务中脑电图复杂性的动态演变

Dynamic Evolution of EEG Complexity in Schizophrenia Across Cognitive Tasks.

作者信息

Molina Rosa, Crespo-Cobo Yasmina, Esteban Francisco J, Arias Ana Victoria, Rodríguez-Árbol Javier, Soriano Maria Felipa, Ibáñez-Molina Antonio J, Iglesias-Parro Sergio

机构信息

Department of Psychology, University of Jaén, 23071 Jaén, Spain.

Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain.

出版信息

Entropy (Basel). 2025 Feb 22;27(3):226. doi: 10.3390/e27030226.

Abstract

Schizophrenia is characterized by widespread disruptions in neural connectivity and dynamic modulation. Traditional EEG analyses often rely on static or averaged measures, which may overlook the temporal evolution of neural complexity across cognitive demands. This study employed Higuchi Fractal Dimension, a non-linear measure of signal complexity, to examine the temporal dynamics of EEG activity across five cortical regions (central, frontal, occipital, parietal, and temporal lobes) during an attentional and a memory-based task in individuals diagnosed with schizophrenia and healthy controls. A permutation-based topographic analysis of variance revealed significant differences in neural complexity between tasks and groups. In the control group, results showed a consistent pattern of higher neural complexity during the attentional task across the different brain regions (except during a few moments in the temporal and occipital regions). This pattern of differentiation in complexity between the attentional and memory tasks reflects healthy individuals' ability to dynamically modulate neural activity based on task-specific requirements. In contrast, the group of patients with schizophrenia exhibited inconsistent patterns of differences in complexity between tasks over time across all neural regions. That is, differences in complexity between tasks varies across time intervals, being sometimes higher in the attentional task and other times higher in the memory task (especially in the central, frontal, and temporal regions). This inconsistent pattern in patients can explain reduced task-specific modulation of EEG complexity in schizophrenia, and suggests a disruption in the modulation of neural activity on function of task demands. These findings underscore the importance of analyzing the temporal dynamics of EEG complexity to capture task-specific neural modulation.

摘要

精神分裂症的特征是神经连接和动态调节广泛紊乱。传统的脑电图分析通常依赖于静态或平均测量,这可能会忽略神经复杂性在不同认知需求下的时间演变。本研究采用信号复杂性的非线性测量方法—— Higuchi 分形维数,来检查被诊断为精神分裂症的个体和健康对照在注意力任务和基于记忆的任务期间,五个皮质区域(中央、额叶、枕叶、顶叶和颞叶)脑电图活动的时间动态。基于排列的地形方差分析揭示了任务和组之间神经复杂性的显著差异。在对照组中,结果显示在注意力任务期间,不同脑区的神经复杂性呈现出一致的较高模式(除了颞叶和枕叶区域的某些时刻)。注意力任务和记忆任务之间这种复杂性的差异模式反映了健康个体根据特定任务要求动态调节神经活动的能力。相比之下,精神分裂症患者组在所有神经区域随时间推移,任务之间复杂性差异模式不一致。也就是说,任务之间复杂性的差异在不同时间间隔有所不同,有时在注意力任务中较高,有时在记忆任务中较高(特别是在中央、额叶和颞叶区域)。患者的这种不一致模式可以解释精神分裂症中脑电图复杂性的特定任务调节减少,并表明神经活动对任务需求功能的调节受到破坏。这些发现强调了分析脑电图复杂性的时间动态以捕捉特定任务神经调节的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d244/11941378/11412980e3f8/entropy-27-00226-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验