Geitenbeek Ritch T J, Duhoky Rauand, Burghgraef Thijs A, Piozzi Guglielmo Niccolò, Masum Shamsul, Hopgood Adrian A, Denost Quentin, van Eetvelde Ellen, Bianchi Paolo, Rouanet Philippe, Hompes Roel, Gómez Ruiz Marcos, Briggs Jim, Khan Jim S, Consten Esther C J
Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
Department of Surgery, Meander Medical Center, 3813 TZ Amersfoort, The Netherlands.
Cancers (Basel). 2025 Mar 15;17(6):992. doi: 10.3390/cancers17060992.
BACKGROUND/OBJECTIVES: Rectal cancer is a major global health issue with high morbidity and mortality rates. Local recurrence (LR) significantly impacts patient outcomes, decreasing survival rates and often necessitating extensive secondary treatments. While robot-assisted total mesorectal excision (R-TME) is becoming a preferred method for rectal cancer surgery due to its improved precision and visualisation, long-term data on LR and predictors of recurrence remain limited. This study aims to determine the 3-year LR rate following R-TME and to identify predictors of recurrence to enhance patient selection and the personalisation of treatment.
This retrospective international multicentre cohort study included 1039 consecutive rectal cancer patients who underwent R-TME between 2013 and 2020, with a minimum of 3 years of follow-up. Data from tertiary colorectal centres in the United Kingdom, the Netherlands, Spain, France, Italy, and Belgium were analysed. Potential predictors of LR were identified using backward elimination, and four machine learning models were evaluated for predicting LR.
The 3-year LR rate was 3.8%. Significant predictors of LR included advanced clinical M-staging, length of the hospital stay, postoperative ileus, postoperative complications, pathological N-staging, the completeness of resection, and the resection margin distance. The eXtreme Gradient Boosting model performed best for LR prediction, with a final accuracy of 77.1% and an AUC of 0.76.
R-TME in high-volume centres achieves low 3-year LR rates, suggesting that robot-assisted surgery offers oncological safety and advantages in rectal cancer management. This study underscores the importance of surgical precision, patient selection, and standardised perioperative care, supporting further investment in robotic training to improve long-term patient outcomes.
背景/目的:直肠癌是一个重大的全球健康问题,发病率和死亡率都很高。局部复发(LR)对患者的治疗结果有显著影响,会降低生存率,并且常常需要进行广泛的二次治疗。虽然机器人辅助全直肠系膜切除术(R-TME)因其提高的精确性和可视化效果正成为直肠癌手术的首选方法,但关于LR和复发预测因素的长期数据仍然有限。本研究旨在确定R-TME术后3年的LR率,并识别复发的预测因素,以优化患者选择和治疗的个性化。
这项回顾性国际多中心队列研究纳入了2013年至2020年间连续接受R-TME的1039例直肠癌患者,随访时间至少为3年。对英国、荷兰、西班牙、法国、意大利和比利时的三级结直肠中心的数据进行了分析。使用向后消除法确定LR的潜在预测因素,并评估四种机器学习模型预测LR的能力。
3年LR率为3.8%。LR的显著预测因素包括临床M分期晚期、住院时间、术后肠梗阻、术后并发症、病理N分期、切除完整性和切缘距离。极端梯度提升模型在LR预测方面表现最佳,最终准确率为77.1%,曲线下面积为0.76。
在大型中心进行的R-TME术后3年LR率较低,这表明机器人辅助手术在直肠癌治疗中具有肿瘤学安全性和优势。本研究强调了手术精确性、患者选择和标准化围手术期护理的重要性,支持进一步投资于机器人培训以改善患者的长期治疗结果。