Suppr超能文献

基于MRI图像的肩袖损伤多模型分割算法

Multi-Model Segmentation Algorithm for Rotator Cuff Injury Based on MRI Images.

作者信息

Li Mengqi, Fang Jingchao, Hou Haonan, Yuan Li, Guo Jin, Liu Zhenlong

机构信息

Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China.

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Bioengineering (Basel). 2025 Feb 21;12(3):218. doi: 10.3390/bioengineering12030218.

Abstract

This paper proposes an AI-based diagnostic method using MRI images for rotator cuff injuries to assist in treatment by segmenting tear areas and assessing tear severity. A multi-model deep learning network based on Unet + FPN architecture was developed to automatically segment rotator cuff injury images and determine tear grades. A dataset of 376 patients with 5640 images was used for training, with an additional 94 patients and 1410 images reserved for testing. To optimize segmentation, a tailored matching strategy was applied, achieving an Intersection over Union (IoU) of 0.79 ± 0.01 and a Dice coefficient of 0.75 ± 0.01, indicating high accuracy in segmenting tear areas. For tear severity indicators, the accuracy of estimating retraction (ER) reached 0.92 ± 0.02, and the accuracy of estimating stop tear width (ESTW) reached 0.79 ± 0.01. As the first AI algorithm specifically developed for diagnosing rotator cuff injuries, this platform demonstrates promising accuracy in both tear segmentation and severity assessment, aiming to support doctors in providing efficient, accurate diagnoses of rotator cuff tears.

摘要

本文提出了一种基于人工智能的利用磁共振成像(MRI)图像诊断肩袖损伤的方法,通过分割撕裂区域和评估撕裂严重程度来辅助治疗。开发了一种基于Unet + FPN架构的多模型深度学习网络,用于自动分割肩袖损伤图像并确定撕裂等级。使用了一个包含376例患者、5640张图像的数据集进行训练,另外保留94例患者和1410张图像用于测试。为了优化分割,应用了一种定制的匹配策略,交并比(IoU)达到0.79±0.01,骰子系数达到0.75±0.01,表明在分割撕裂区域方面具有很高的准确性。对于撕裂严重程度指标,估计回缩(ER)的准确率达到0.92±0.02,估计止裂宽度(ESTW)的准确率达到0.79±0.01。作为首个专门为诊断肩袖损伤而开发的人工智能算法,该平台在撕裂分割和严重程度评估方面均显示出有前景的准确性,旨在支持医生对肩袖撕裂进行高效、准确的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb00/11939712/586f1b1e3f9a/bioengineering-12-00218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验