Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China; School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China.
Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
J Biomed Inform. 2024 Sep;157:104710. doi: 10.1016/j.jbi.2024.104710. Epub 2024 Aug 17.
Identifying cancer driver genes, especially rare or patient-specific cancer driver genes, is a primary goal in cancer therapy. Although researchers have proposed some methods to tackle this problem, these methods mostly identify cancer driver genes at single gene level, overlooking the cooperative relationship among cancer driver genes. Identifying cooperating cancer driver genes in individual patients is pivotal for understanding cancer etiology and advancing the development of personalized therapies.
Here, we propose a novel Personalized Cooperating cancer Driver Genes (PCoDG) method by using hypergraph random walk to identify the cancer driver genes that cooperatively drive individual patient cancer progression. By leveraging the powerful ability of hypergraph in representing multi-way relationships, PCoDG first employs the personalized hypergraph to depict the complex interactions among mutated genes and differentially expressed genes of an individual patient. Then, a hypergraph random walk algorithm based on hyperedge similarity is utilized to calculate the importance scores of mutated genes, integrating these scores with signaling pathway data to identify the cooperating cancer driver genes in individual patients.
The experimental results on three TCGA cancer datasets (i.e., BRCA, LUAD, and COADREAD) demonstrate the effectiveness of PCoDG in identifying personalized cooperating cancer driver genes. These genes identified by PCoDG not only offer valuable insights into patient stratification correlating with clinical outcomes, but also provide an useful reference resource for tailoring personalized treatments.
We propose a novel method that can effectively identify cooperating cancer driver genes for individual patients, thereby deepening our understanding of the cooperative relationship among personalized cancer driver genes and advancing the development of precision oncology.
鉴定癌症驱动基因,尤其是罕见或患者特异性的癌症驱动基因,是癌症治疗的首要目标。尽管研究人员已经提出了一些方法来解决这个问题,但这些方法主要是在单基因水平上识别癌症驱动基因,忽略了癌症驱动基因之间的合作关系。鉴定个体患者中协同作用的癌症驱动基因对于理解癌症病因和推进个性化治疗的发展至关重要。
在这里,我们提出了一种新的个性化协同癌症驱动基因(PCoDG)方法,通过使用超图随机游走来识别协同驱动个体患者癌症进展的癌症驱动基因。通过利用超图在表示多对关系方面的强大能力,PCoDG 首先使用个性化超图来描绘个体患者中突变基因和差异表达基因之间的复杂相互作用。然后,利用基于超边相似性的超图随机游走算法计算突变基因的重要性得分,将这些得分与信号通路数据相结合,以识别个体患者中的协同癌症驱动基因。
在三个 TCGA 癌症数据集(即 BRCA、LUAD 和 COADREAD)上的实验结果表明,PCoDG 有效地识别了个性化的协同癌症驱动基因。PCoDG 鉴定的这些基因不仅为与临床结局相关的患者分层提供了有价值的见解,而且为定制个性化治疗提供了有用的参考资源。
我们提出了一种新的方法,可以有效地识别个体患者的协同癌症驱动基因,从而加深我们对个性化癌症驱动基因之间协同关系的理解,并推进精准肿瘤学的发展。