Suppr超能文献

基于机理相似性的迁移学习实现镍催化的对映选择性铃木-宫浦交叉偶联配体预测:利用钯的知识发现镍

Transfer Learning-Enabled Ligand Prediction for Ni-Catalyzed Atroposelective Suzuki-Miyaura Cross-Coupling Based on Mechanistic Similarity: Leveraging Pd Knowledge for Ni Discovery.

作者信息

Xu Xin-Yuan, Liu Li-Gao, Xu Li-Cheng, Zhang Shuo-Qing, Hong Xin

机构信息

Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China.

School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China.

出版信息

J Am Chem Soc. 2025 May 7;147(18):15318-15328. doi: 10.1021/jacs.5c00838. Epub 2025 Mar 28.

Abstract

The rational design of novel molecular catalysts often confronts challenges due to complex structure-performance relationships. Emerging data-driven approaches provide revolutionary solutions, yet the application of machine learning to new catalyst development inevitably faces a low-data regime with limited effective structure-performance modelings available. In this study, we present a transfer learning strategy to facilitate knowledge transfer from well-documented Pd catalysis to a novel, underexplored Ni system. By synergistically modeling extensive Pd catalysis data with limited Ni/Sadphos data, our approach accurately predicted novel Sadphos ligands, enabling the first atroposelective Ni-catalyzed Suzuki-Miyaura cross-coupling reaction. The synthetic utility of the machine learning-predicted ligand was further demonstrated in its broad synthetic scope, gram-scale synthesis, and precise control of dual axial chiralities in ternaphthalene through the sequential coupling under Ni and Pd catalysis. Additionally, density functional theory calculations were employed to reveal the reaction mechanism and stereochemical model of this new Ni catalyst, validating the proposed mechanistic connection between Ni and Pd. This work demonstrates how machine learning models can effectively leverage mechanistic connectivity, applying extensive structure-performance relationship data from the literature to predict new catalysts, providing a novel strategy for the rational design of molecular catalysts from a few-shot learning perspective.

摘要

由于复杂的结构-性能关系,新型分子催化剂的合理设计常常面临挑战。新兴的数据驱动方法提供了革命性的解决方案,然而将机器学习应用于新型催化剂开发不可避免地面临低数据量的情况,可用的有效结构-性能建模有限。在本研究中,我们提出了一种迁移学习策略,以促进从充分记录的钯催化向新型、研究较少的镍体系的知识转移。通过将大量钯催化数据与有限的镍/萨德磷数据进行协同建模,我们的方法准确预测了新型萨德磷配体,实现了首例镍催化的对映选择性铃木-宫浦交叉偶联反应。机器学习预测的配体在其广泛的合成范围、克级合成以及通过镍和钯催化下的顺序偶联对三联萘中双轴手性的精确控制方面进一步证明了其合成实用性。此外,采用密度泛函理论计算来揭示这种新型镍催化剂的反应机理和立体化学模型,验证了所提出的镍与钯之间的机理联系。这项工作展示了机器学习模型如何有效地利用机理连通性,应用文献中的大量结构-性能关系数据来预测新型催化剂,从少样本学习的角度为分子催化剂的合理设计提供了一种新策略。

相似文献

本文引用的文献

3
Bridging the information gap in organic chemical reactions.弥合有机化学反应中的信息差距。
Nat Chem. 2024 Apr;16(4):491-498. doi: 10.1038/s41557-024-01470-8. Epub 2024 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验