Suppr超能文献

相似文献

1
Data-Driven Multi-Objective Optimization Tactics for Catalytic Asymmetric Reactions Using Bisphosphine Ligands.
J Am Chem Soc. 2023 Jan 11;145(1):110-121. doi: 10.1021/jacs.2c08513. Epub 2022 Dec 27.
2
Rapid Synthesis of Chiral 1,2-Bisphosphine Derivatives through Copper(I)-Catalyzed Asymmetric Conjugate Hydrophosphination.
Angew Chem Int Ed Engl. 2020 Apr 27;59(18):7057-7062. doi: 10.1002/anie.201916076. Epub 2020 Mar 11.
3
Data Science Meets Physical Organic Chemistry.
Acc Chem Res. 2021 Aug 5. doi: 10.1021/acs.accounts.1c00285.
4
Catalytic asymmetric organozinc additions to carbonyl compounds.
Chem Rev. 2001 Mar;101(3):757-824. doi: 10.1021/cr000411y.
5
Transferrable selectivity profiles enable prediction in synergistic catalyst space.
Chem Sci. 2023 Jan 17;14(7):1885-1895. doi: 10.1039/d2sc05974f. eCollection 2023 Feb 15.
7
Reaction-Agnostic Featurization of Bidentate Ligands for Bayesian Ridge Regression of Enantioselectivity.
ACS Catal. 2024 Jun 4;14(12):9302-9312. doi: 10.1021/acscatal.4c02452. eCollection 2024 Jun 21.
8
Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity.
Acc Chem Res. 2019 Jan 15;52(1):199-215. doi: 10.1021/acs.accounts.8b00473. Epub 2018 Dec 11.
9
Recent Advances in the Development of Chiral Gold Complexes for Catalytic Asymmetric Catalysis.
Chem Asian J. 2021 Mar 1;16(5):364-377. doi: 10.1002/asia.202001375. Epub 2021 Jan 25.
10
Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis.
Chem Soc Rev. 2024 Jul 1;53(13):6735-6778. doi: 10.1039/d3cs00028a.

引用本文的文献

1
Discovery of Ni Complexes for CO Insertion Enabled by a Machine Learning-Computational-Selection Sequence.
J Am Chem Soc. 2025 Jul 30;147(30):26149-26157. doi: 10.1021/jacs.5c00441. Epub 2025 Jul 18.
2
Highly parallel optimisation of chemical reactions through automation and machine intelligence.
Nat Commun. 2025 Jul 12;16(1):6464. doi: 10.1038/s41467-025-61803-0.
3
AI Approaches to Homogeneous Catalysis with Transition Metal Complexes.
ACS Catal. 2025 May 14;15(11):9089-9105. doi: 10.1021/acscatal.5c01202. eCollection 2025 Jun 6.
4
Predicting three-component reaction outcomes from ~40,000 miniaturized reactant combinations.
Sci Adv. 2025 May 30;11(22):eadw6047. doi: 10.1126/sciadv.adw6047. Epub 2025 May 28.
5
Data-Driven Virtual Screening of Conformational Ensembles of Transition-Metal Complexes.
J Chem Theory Comput. 2025 May 27;21(10):5334-5345. doi: 10.1021/acs.jctc.5c00303. Epub 2025 May 9.
6
Computer-Generated, Mechanistic Networks Assist in Assigning the Outcomes of Complex Multicomponent Reactions.
J Am Chem Soc. 2025 May 7;147(18):15636-15644. doi: 10.1021/jacs.5c02846. Epub 2025 Apr 28.
7
Impact of Model Selection and Conformational Effects on the Descriptors for In Silico Screening Campaigns: A Case Study of Rh-Catalyzed Acrylate Hydrogenation.
J Phys Chem C Nanomater Interfaces. 2024 May 2;128(19):7987-7998. doi: 10.1021/acs.jpcc.4c01631. eCollection 2024 May 16.
8
The Importance of Atomic Charges for Predicting Site-Selective Ir-, Ru-, and Rh-Catalyzed C-H Borylations.
J Org Chem. 2025 May 2;90(17):6000-6012. doi: 10.1021/acs.joc.5c00343. Epub 2025 Apr 23.
9
Bayesian Meta-Learning for Few-Shot Reaction Outcome Prediction of Asymmetric Hydrogenation of Olefins.
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202503821. doi: 10.1002/anie.202503821. Epub 2025 May 2.
10
Machine learning workflows beyond linear models in low-data regimes.
Chem Sci. 2025 Apr 15;16(19):8555-8560. doi: 10.1039/d5sc00996k. eCollection 2025 May 14.

本文引用的文献

2
Single-atom logic for heterocycle editing.
Nat Synth. 2022 May;1(5):352-364. doi: 10.1038/s44160-022-00052-1. Epub 2022 Apr 11.
3
Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform.
ACS Cent Sci. 2022 Jun 22;8(6):825-836. doi: 10.1021/acscentsci.2c00207. Epub 2022 Jun 10.
4
Intelligent control of nanoparticle synthesis through machine learning.
Nanoscale. 2022 May 16;14(18):6688-6708. doi: 10.1039/d2nr00124a.
5
Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics.
Adv Sci (Weinh). 2022 Apr;9(10):e2105547. doi: 10.1002/advs.202105547. Epub 2022 Feb 1.
6
A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis.
J Am Chem Soc. 2022 Jan 26;144(3):1205-1217. doi: 10.1021/jacs.1c09718. Epub 2022 Jan 12.
7
The Evolution of Data-Driven Modeling in Organic Chemistry.
ACS Cent Sci. 2021 Oct 27;7(10):1622-1637. doi: 10.1021/acscentsci.1c00535. Epub 2021 Oct 19.
8
Kernel Methods for Predicting Yields of Chemical Reactions.
J Chem Inf Model. 2022 May 9;62(9):2077-2092. doi: 10.1021/acs.jcim.1c00699. Epub 2021 Oct 26.
9
Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis.
Science. 2021 Oct 15;374(6565):301-308. doi: 10.1126/science.abj4213. Epub 2021 Oct 14.
10
Data Science Meets Physical Organic Chemistry.
Acc Chem Res. 2021 Aug 5. doi: 10.1021/acs.accounts.1c00285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验