Saraiva Helena Fabiana Reis de Almeida, Sangalli Juliano Rodrigues, Alves Luana, da Silveira Juliano Coelho, Meirelles Flávio Vieira, Perecin Felipe
Reproduction. 2025 Apr 10;169(5). doi: 10.1530/REP-23-0235. Print 2025 May 1.
Oocytes with subtle differences in chromatin configuration and nuclear lamina characteristics, detectable by a refined germinal vesicle (GV) classification system here described, respond differently to meiotic maturation systems leading to different in vitro maturation (IVM) outcomes.
The nuclear, cytoplasmic and molecular maturation of the mammalian oocyte is a finely orchestrated sequence of events that relies on proper cumulus-oocyte communication. Bovine oocytes enter the IVM systems at the GV stage exhibiting four different chromatin configurations (GV0-GV3). Herein, we associate the oocyte chromatin and nuclear lamina configurations to propose a refined GV classification (GV0, GV1.1-GV1.3, GV2.1-GV2.3 and GV3.1-GV3.3). This refined GV classification system was correlated with oocyte meiosis resumption and transzonal projections (TZPs) density of cumulus-oocyte complexes (COCs) submitted to three IVM systems (control IVM and a modified IVM preceded or not by a pre-IVM step). Pre-IVM resulted in lower polar body extrusion rates at 19 h IVM, albeit ∼24% of the oocytes extruded their first polar body at 9 h IVM. Pre-IVM sustained 80% of oocytes meiotically arrested but altered GV distribution, reducing GV2 and increasing GV1.3 and GV3.3 categories. Pre-IVM reduced TZP densities predominantly in pre-matured GV3 and GVBD COCs. At 9 h of IVM, both groups matured in modified IVM showed lower TZP densities compared to immature and IVM control. Gene expression supports the TZP density differences, with ERK2 and PRKACA upregulation in pre-matured cumulus and in modified IVM groups at 9 h of IVM. GDF9 and BMP15 levels were similar between treated and control groups at all time points. Our findings indicate that despite the IVM system, the initial oocyte GV stage influences pre-IVM and IVM outcomes. The refined GV classification system is a useful tool to oocyte biologists.
通过本文所述的精细生发泡(GV)分类系统可检测到,染色质构型和核纤层特征存在细微差异的卵母细胞,对减数分裂成熟系统的反应不同,从而导致不同的体外成熟(IVM)结果。
哺乳动物卵母细胞的核、细胞质和分子成熟是一系列精心编排的事件序列,依赖于卵丘-卵母细胞之间的适当通讯。牛卵母细胞在GV期进入IVM系统,表现出四种不同的染色质构型(GV0-GV3)。在此,我们将卵母细胞染色质和核纤层构型联系起来,提出一种精细的GV分类(GV0、GV1.1-GV1.3、GV2.1-GV2.3和GV3.1-GV3.3)。这种精细的GV分类系统与提交至三种IVM系统(对照IVM以及在IVM前有无预IVM步骤的改良IVM)的卵丘-卵母细胞复合体(COC)的卵母细胞减数分裂恢复和透明带穿入投影(TZP)密度相关。预IVM导致IVM 19小时时极体排出率较低,尽管约24%的卵母细胞在IVM 9小时时排出了第一极体。预IVM使80%的卵母细胞减数分裂停滞,但改变了GV分布,减少了GV2类别,增加了GV1.3和GV3.3类别。预IVM主要降低了早熟GV3和生发泡破裂(GVBD)COC中的TZP密度。在IVM 9小时时,与未成熟和IVM对照相比,在改良IVM中成熟的两组TZP密度均较低。基因表达支持TZP密度差异,在IVM 9小时时,早熟卵丘和改良IVM组中细胞外信号调节激酶2(ERK2)和蛋白激酶A催化亚基α(PRKACA)上调。在所有时间点,处理组和对照组之间生长分化因子9(GDF9)和骨形态发生蛋白15(BMP15)水平相似。我们的研究结果表明,无论IVM系统如何,最初的卵母细胞GV期都会影响预IVM和IVM结果。这种精细的GV分类系统对卵母细胞生物学家是一个有用的工具。