Smith Edward N, van Aalst Marvin, Weber Andreas P M, Ebenhöh Oliver, Heinemann Matthias
Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, Netherlands.
Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Sci Adv. 2025 Mar 28;11(13):eadt9287. doi: 10.1126/sciadv.adt9287.
Photorespiration causes a substantial decrease in crop yield because of mitochondrial decarboxylation. Alternative pathways (APs) have been designed to relocate the decarboxylation step or even fix additional carbon. To improve the success of transferring those engineered APs from model species to crops, we must understand how they will interact with metabolism and how plant physiology affects their performance. Here, we used multiple mathematical modeling techniques to analyze and compare existing AP designs. We show that carbon-fixing APs are the most promising candidates to replace native photorespiration in major crop species. Our results demonstrate the different metabolic routes that APs use to increase yield and which plant physiology can profit the most from them. We anticipate our results to guide the design of new APs and to help improve existing ones.
由于线粒体脱羧作用,光呼吸会导致作物产量大幅下降。人们设计了替代途径(APs)来重新定位脱羧步骤,甚至固定额外的碳。为了提高将这些工程化的APs从模式物种转移到作物上的成功率,我们必须了解它们将如何与代谢相互作用,以及植物生理学如何影响它们的性能。在这里,我们使用多种数学建模技术来分析和比较现有的AP设计。我们表明,固碳APs是替代主要作物物种中天然光呼吸的最有前景的候选者。我们的结果证明了APs用于提高产量的不同代谢途径,以及哪种植物生理学能从它们中获益最多。我们期望我们的结果能指导新APs的设计,并帮助改进现有的APs。