Faculty of Science and Engineering, Molecular Systems Biology - Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
Institute of Quantitative and Theoretical Biology, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
Mol Plant. 2023 Oct 2;16(10):1547-1563. doi: 10.1016/j.molp.2023.08.017. Epub 2023 Sep 1.
Photosynthesis in crops and natural vegetation allows light energy to be converted into chemical energy and thus forms the foundation for almost all terrestrial trophic networks on Earth. The efficiency of photosynthetic energy conversion plays a crucial role in determining the portion of incident solar radiation that can be used to generate plant biomass throughout a growth season. Consequently, alongside the factors such as resource availability, crop management, crop selection, maintenance costs, and intrinsic yield potential, photosynthetic energy use efficiency significantly influences crop yield. Photosynthetic efficiency is relevant to sustainability and food security because it affects water use efficiency, nutrient use efficiency, and land use efficiency. This review focuses specifically on the potential for improvements in photosynthetic efficiency to drive a sustainable increase in crop yields. We discuss bypassing photorespiration, enhancing light use efficiency, harnessing natural variation in photosynthetic parameters for breeding purposes, and adopting new-to-nature approaches that show promise for achieving unprecedented gains in photosynthetic efficiency.
作物和自然植被的光合作用将光能转化为化学能,从而为地球上几乎所有陆地营养网络奠定了基础。光合作用能量转换的效率在决定整个生长季节可用于产生植物生物质的入射太阳辐射部分方面起着至关重要的作用。因此,除了资源可用性、作物管理、作物选择、维护成本和内在产量潜力等因素外,光合能量利用效率对作物产量有显著影响。光合作用效率与可持续性和粮食安全相关,因为它影响水利用效率、养分利用效率和土地利用效率。本综述特别关注提高光合作用效率以实现可持续提高作物产量的潜力。我们讨论了绕过光呼吸、提高光能利用效率、利用光合作用参数的自然变异进行育种以及采用有希望实现光合作用效率前所未有提高的新方法。