Duan Xunkai, Zhang Jiayong, Zhu Ziye, Liu Yuntian, Zhang Zhenyu, Žutić Igor, Zhou Tong
Eastern Institute of Technology, Eastern Institute for Advanced Study, Ningbo, Zhejiang 315200, China.
Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai 200240, China.
Phys Rev Lett. 2025 Mar 14;134(10):106801. doi: 10.1103/PhysRevLett.134.106801.
Magnetoelectric coupling is crucial for uncovering fundamental phenomena and advancing technologies in high-density data storage and energy-efficient devices. The emergence of altermagnets, which unify the advantages of ferromagnets and antiferromagnets, offers unprecedented opportunities for magnetoelectric coupling. However, electrically tuning altermagnets remains an outstanding challenge. Here, we demonstrate how this challenge can be overcome by using antiferroelectricity and ferroelectricity to modulate the spin splitting in altermagnets, employing a universal, symmetry-based design principle supported by an effective model. We introduce an unexplored class of multiferroics: antiferroelectric altermagnets (AFEAM), where antiferroelectricity and altermagnetism coexist in a single material. From first-principles calculations, we validate the feasibility of AFEAM in well-established van der Waals metal thio(seleno)phosphates and perovskite oxides. We reveal the design of AFEAM ranging from two-dimensional monolayers to three-dimensional bulk structures. Remarkably, even a weak electric field can effectively toggle spin polarization in the AFEAM by switching between antiferroelectric and ferroelectric states. Our findings not only enrich the understanding of magnetoelectric coupling but also pave the way for electrically controlled spintronic and multiferroic devices.
磁电耦合对于揭示基本现象以及推动高密度数据存储和节能设备等技术的发展至关重要。兼具铁磁体和反铁磁体优点的交替磁体的出现,为磁电耦合提供了前所未有的机遇。然而,对交替磁体进行电学调控仍然是一个突出的挑战。在此,我们展示了如何通过利用反铁电和铁电来调制交替磁体中的自旋分裂来克服这一挑战,采用一种基于对称性的通用设计原则,并得到一个有效模型的支持。我们引入了一类尚未被探索的多铁性材料:反铁电交替磁体(AFEAM),其中反铁电和交替磁性共存于单一材料中。通过第一性原理计算,我们验证了AFEAM在成熟的范德华金属硫(硒)磷酸盐和钙钛矿氧化物中的可行性。我们揭示了从二维单层到三维体结构的AFEAM设计。值得注意的是,即使是弱电场也能通过在反铁电和铁电状态之间切换来有效地改变AFEAM中的自旋极化。我们的发现不仅丰富了对磁电耦合的理解,也为电控自旋电子器件和多铁性器件铺平了道路。