Suppr超能文献

用于骨组织工程中增强细胞增殖和成骨分化的导电明胶/透明质酸/羟基磷灰石支架

Electroconductive gelatin/hyaluronic acid/hydroxyapatite scaffolds for enhanced cell proliferation and osteogenic differentiation in bone tissue engineering.

作者信息

Kasi Phanindra Babu, Serafin Aleksandra, O'Brien Liam, Moghbel Nick, Novikov Lev N, Kelk Peyman, Collins Maurice N

机构信息

Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden; Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 751 23 Uppsala, Sweden.

School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland.

出版信息

Biomater Adv. 2025 Aug;173:214286. doi: 10.1016/j.bioadv.2025.214286. Epub 2025 Mar 24.

Abstract

Addressing the challenge of bone tissue regeneration requires creating an optimal microenvironment that promotes both osteogenesis and angiogenesis. Electroconductive scaffolds have emerged as promising solutions for bone regeneration; however, existing conductive polymers often lack biofunctionality and biocompatibility. In this study, we synthesized poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) using chemical oxidation polymerization and incorporated them into gelatin/hyaluronic acid/hydroxyapatite (Gel:HA:HAp) scaffolds to develop Gel:HA:HAp:PEDOT-NP scaffolds. Morphological analysis by scanning electron microscopy (SEM) showed a honeycomb-like structure with pores of 228-250 μm in diameter. The addition of the synthesized PEDOT NPs increased the conductive capabilities of the scaffolds to 1 × 10 ± 1.3 × 10 S/cm. Biological assessment of PEDOT NP scaffolds using human foetal osteoblastic 1.19 cells (hFOB), and human bone marrow-derived mesenchymal stem cells (hBMSCs) revealed enhanced cell proliferation and viability compared to control scaffold without NPs, along with increased osteogenic differentiation, evidenced by higher levels of alkaline phosphatase activity, osteopontin (OPN), alkaline phosphatase (ALP), and osteocalcin (OCN) expression, as observed through immunofluorescence, and enhanced expression of osteogenic-related genes. The conductive scaffold shows interesting mineralization capacity, as shown by Alizarin red and Osteoimage staining. Furthermore, PEDOT-NP scaffolds promoted angiogenesis, as indicated by improved tube formation abilities of human umbilical vein endothelial cells (HUVECs), especially at the higher concentrations of NPs. Overall, our findings demonstrate that the integration of PEDOT NPs scaffold enhances their conductive properties and promotes cell proliferation, osteogenic differentiation, and angiogenesis. Gel:HA:HAp:PEDOT-NP scaffolds exhibit promising potential as efficient biomaterials for bone tissue regeneration, offering a potential engineered platform for clinical applications.

摘要

应对骨组织再生的挑战需要创造一个促进成骨和血管生成的最佳微环境。导电支架已成为骨再生的有前景的解决方案;然而,现有的导电聚合物往往缺乏生物功能和生物相容性。在本研究中,我们通过化学氧化聚合法合成了聚(3,4-乙撑二氧噻吩)纳米颗粒(PEDOT NPs),并将其掺入明胶/透明质酸/羟基磷灰石(Gel:HA:HAp)支架中,以开发Gel:HA:HAp:PEDOT-NP支架。扫描电子显微镜(SEM)的形态分析显示出直径为228-250μm的蜂窝状结构。合成的PEDOT NPs的加入使支架的导电能力提高到1×10±1.3×10 S/cm。使用人胎儿成骨细胞1.19(hFOB)和人骨髓间充质干细胞(hBMSCs)对PEDOT NP支架进行的生物学评估显示,与不含NP的对照支架相比,细胞增殖和活力增强,同时成骨分化增加,通过免疫荧光观察到碱性磷酸酶活性、骨桥蛋白(OPN)、碱性磷酸酶(ALP)和骨钙素(OCN)表达水平更高,以及成骨相关基因的表达增强,证明了这一点。导电支架显示出有趣的矿化能力,如茜素红和Osteoimage染色所示。此外,PEDOT-NP支架促进了血管生成,人脐静脉内皮细胞(HUVECs)的管形成能力提高表明了这一点,尤其是在较高浓度的NP时。总体而言,我们的研究结果表明,PEDOT NPs支架的整合增强了其导电性能,并促进了细胞增殖、成骨分化和血管生成。Gel:HA:HAp:PEDOT-NP支架作为骨组织再生的有效生物材料具有广阔的潜力,为临床应用提供了一个潜在的工程平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验