Li Jiaxing, Fiore Frederic, Monk Kelly R, Agarwal Amit
Vollum Institute, Oregon Health & Science University, Portland, OR, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
Trends Neurosci. 2025 May;48(5):377-388. doi: 10.1016/j.tins.2025.02.010. Epub 2025 Mar 28.
Oligodendrocyte lineage cells (OLCs), comprising oligodendrocyte precursor cells (OPCs) and oligodendrocytes, are pivotal in sculpting central nervous system (CNS) architecture and function. OPCs mature into oligodendrocytes, which enwrap axons with myelin sheaths that are critical for enhancing neural transmission. Notably, OLCs actively respond to neuronal activity, modulating neural circuit functions. Understanding neuron-OLC interactions is key to unraveling how OLCs contribute to CNS health and pathology. This review highlights insights from zebrafish and mouse models, revealing how synaptic and extrasynaptic pathways converge to shape spatiotemporal calcium (Ca) dynamics within OLCs. We explore how Ca signal integration across spatial and temporal scales acts as a master regulator of OLC fate determination and myelin plasticity.
少突胶质细胞谱系细胞(OLCs),包括少突胶质前体细胞(OPCs)和少突胶质细胞,在塑造中枢神经系统(CNS)结构和功能方面起着关键作用。OPCs成熟为少突胶质细胞,后者用髓鞘包裹轴突,这对增强神经传递至关重要。值得注意的是,OLCs能积极响应神经元活动,调节神经回路功能。了解神经元与OLC的相互作用是揭示OLCs如何影响CNS健康和病理状态的关键。本综述重点介绍了斑马鱼和小鼠模型的相关见解,揭示了突触和突触外途径如何共同塑造OLCs内的时空钙(Ca)动态。我们探讨了跨空间和时间尺度的Ca信号整合如何作为OLC命运决定和髓鞘可塑性的主要调节因子。