Suppr超能文献

创伤性脊髓损伤中的神经康复与白质修复:临床研究与临床前研究的对话

Neurorehabilitation and white matter repair in traumatic spinal cord injury: a dialogue between clinical and preclinical studies.

作者信息

Baldassarro Vito Antonio, Baroncini Ilaria, Calzà Laura, Ciardulli Francesca, Lorenzini Luca, Materazzi Francesco Giuseppe, Merighi Francesca, Quadalti Corinne, Ricci Lucia, Serafino Francesca, Simoncini Laura

机构信息

Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.

Montecatone Rehabilitation Institute, Imola (Bologna), Italy.

出版信息

Front Neurol. 2025 Jun 18;16:1532056. doi: 10.3389/fneur.2025.1532056. eCollection 2025.

Abstract

The central nervous system (CNS) has very limited repair capabilities, and the functional adaptation/compensation after acute injuries is attributed to the significant plasticity of neural circuits, in particular at the synaptic level. However, neurons are only one of the cellular components of the CNS, with gray matter (GM) comprising around 50% of its structure, compared to white matter (WM), where oligodendrocytes (Ols) form the myelin sheath and ensure the isolation of axons for proper electrical conductivity elicited by action potentials. WM is characterized by two remarkable properties: myelin plasticity, defined as experience-induced changes in myelination that mediate long-lasting changes in neural circuit function, and myelin repair, which can be complete and functionally effective and represents the CNS's only true reparative capability. Oligodendrocyte precursor cells (OPCs), accounting for 5-8% of the total CNS cells, are responsible for myelin plasticity and repair. OPCs are generated during development, are widely distributed across both white and gray matter, and remain quiescent until appropriate stimuli, such as functional requests or injuries, arise. Under these conditions, endogenous OPCs, as well as new OPCs derived from the proliferation and differentiation of endogenous neural stem cells, migrate toward axons and differentiate into mature OLs capable of wrapping axons and forming the myelin sheaths. In this review article, we discuss WM plasticity and myelin repair through OPC-dependent endogenous regeneration within the context of spinal cord injury (SCI) and related neurorehabilitation approaches. Clinical data, such as imaging information, pertain to changes in WM during various phases of SCI and have been collected in different rehabilitation contexts. Preclinical data focus on physical stimuli that can enhance the myelin repair capacity of OPCs within the context of the oligo-axon unit. The potential role of myelin regeneration by endogenous stem/precursor cells is finally discussed in the context of regenerative neurorehabilitation for SCI.

摘要

中枢神经系统(CNS)的修复能力非常有限,急性损伤后的功能适应/补偿归因于神经回路的显著可塑性,尤其是在突触水平。然而,神经元只是中枢神经系统的细胞成分之一,与白质(WM)相比,灰质(GM)约占其结构的50%,在白质中,少突胶质细胞(Ols)形成髓鞘并确保轴突隔离,以实现动作电位引发的适当导电性。白质具有两个显著特性:髓鞘可塑性,定义为髓鞘形成的经验诱导变化,介导神经回路功能的持久变化;以及髓鞘修复,它可以是完全的且功能有效,代表中枢神经系统唯一真正的修复能力。少突胶质细胞前体细胞(OPCs)占中枢神经系统细胞总数的5-8%,负责髓鞘可塑性和修复。OPCs在发育过程中产生,广泛分布于白质和灰质中,并保持静止状态,直到出现适当的刺激,如功能需求或损伤。在这些条件下,内源性OPCs以及源自内源性神经干细胞增殖和分化的新OPCs向轴突迁移,并分化为能够包裹轴突并形成髓鞘的成熟少突胶质细胞(OLs)。在这篇综述文章中,我们在脊髓损伤(SCI)和相关神经康复方法的背景下,讨论通过OPC依赖的内源性再生实现的白质可塑性和髓鞘修复。临床数据,如图像信息,涉及SCI不同阶段白质的变化,并已在不同的康复环境中收集。临床前数据聚焦于在少突-轴突单元背景下可增强OPCs髓鞘修复能力的物理刺激。最后,在SCI再生神经康复的背景下讨论了内源性干/前体细胞髓鞘再生的潜在作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3994/12213358/46624789585d/fneur-16-1532056-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验