Xu Site, Sun Mu
Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
Sci Rep. 2025 Mar 28;15(1):10811. doi: 10.1038/s41598-025-95938-3.
Limited research exists on the association between depression and heavy metal exposure. This study aims to develop an interpretable and efficient machine learning (ML) model with robust performance to identify depression linked to heavy metal exposure. Data were derived from the US National Health and Nutrition Examination Survey (NHANES) spanning from 2013 to March 2020. We constructed 5 ML models to detect depression based on heavy metal exposure and assessed their performance using 10 discrimination metrics. The optimal model was selected after parameter tuning with a Genetic Algorithm (GA). To enhance the interpretability of the model's predictions, we applied SHapley Additive exPlanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) algorithms. The study included 19,368 participants. The highest-performing model, an eXtreme Gradient Boosting (XGB) algorithm optimized with GA, identified depression using 16 heavy metal indicators (AUC: 0.686; 95% CI: 0.68-0.69; accuracy: 97.1%). SHAP analysis revealed that elevated blood cadmium levels had a positive influence on the model's prediction of depression, while urine concentrations of barium, thallium, tin, manganese, antimony, lead, and tungsten, along with blood levels of lead, cadmium, mercury, selenium, and manganese, showed a negative influence. In conclusion, the study successfully utilized an efficient and robust GA-XGB model to identify depression linked to heavy metal exposure, supported by SHAP and LIME explanations. Blood cadmium was positively correlated with depression, whereas barium, thallium, tin, manganese, antimony, lead, and tungsten in urine, along with lead, cadmium, mercury, selenium, and manganese in blood, were negatively correlated with depression.
关于抑郁症与重金属暴露之间的关联,现有研究有限。本研究旨在开发一种具有稳健性能的可解释且高效的机器学习(ML)模型,以识别与重金属暴露相关的抑郁症。数据源自2013年至2020年3月的美国国家健康与营养检查调查(NHANES)。我们构建了5个基于重金属暴露检测抑郁症的ML模型,并使用10种判别指标评估其性能。通过遗传算法(GA)进行参数调整后选择了最优模型。为提高模型预测的可解释性,我们应用了夏普利值加法解释(SHAP)和局部可解释模型无关解释(LIME)算法。该研究纳入了19368名参与者。表现最佳的模型是用GA优化的极端梯度提升(XGB)算法,它使用16种重金属指标识别抑郁症(AUC:0.686;95%CI:0.68 - 0.69;准确率:97.1%)。SHAP分析表明,血镉水平升高对模型预测抑郁症有正向影响,而尿中钡、铊、锡、锰、锑、铅和钨的浓度,以及血中铅、镉、汞、硒和锰的水平则显示出负向影响。总之,该研究成功利用了一个高效且稳健的GA - XGB模型来识别与重金属暴露相关的抑郁症,并得到了SHAP和LIME解释的支持。血镉与抑郁症呈正相关,而尿中的钡、铊、锡、锰、锑、铅和钨,以及血中的铅、镉、汞、硒和锰与抑郁症呈负相关。