Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
High Blood Press Cardiovasc Prev. 2024 Sep;31(5):473-483. doi: 10.1007/s40292-024-00666-w. Epub 2024 Aug 12.
There are limited data available regarding the connection between heavy metal exposure and mortality among hypertension patients.
We intend to establish an interpretable machine learning (ML) model with high efficiency and robustness that monitors mortality based on heavy metal exposure among hypertension patients.
Our datasets were obtained from the US National Health and Nutrition Examination Survey (NHANES, 2013-2018). We developed 5 ML models for mortality prediction among hypertension patients by heavy metal exposure, and tested them by 10 discrimination characteristics. Further, we chose the optimally performing model after parameter adjustment by genetic algorithm (GA) for prediction. Finally, in order to visualize the model's ability to make decisions, we used SHapley Additive exPlanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) algorithm to illustrate the features. The study included 2347 participants in total.
A best-performing eXtreme Gradient Boosting (XGB) with GA for mortality prediction among hypertension patients by 13 heavy metals was selected (AUC 0.959; 95% CI 0.953-0.965; accuracy 96.8%). According to sum of SHAP values, cadmium (0.094), cobalt (2.048), lead (1.12), tungsten (0.129) in urine, and lead (2.026), mercury (1.703) in blood positively influenced the model, while barium (- 0.001), molybdenum (- 2.066), antimony (- 0.398), tin (- 0.498), thallium (- 2.297) in urine, and selenium (- 0.842), manganese (- 1.193) in blood negatively influenced the model.
Hypertension patients' mortality associated with heavy metal exposure was predicted by an efficient, robust, and interpretable GA-XGB model with SHAP and LIME. Cadmium, cobalt, lead, tungsten in urine, and mercury in blood are positively correlated with mortality, while barium, molybdenum, antimony, tin, thallium in urine, and lead, selenium, manganese in blood is negatively correlated with mortality.
目前有关重金属暴露与高血压患者死亡率之间关系的数据有限。
我们旨在建立一个高效、稳健且可解释的机器学习(ML)模型,通过监测高血压患者的重金属暴露情况来预测死亡率。
我们的数据集来自美国国家健康与营养调查(NHANES,2013-2018 年)。我们开发了 5 种用于预测高血压患者因重金属暴露导致的死亡率的 ML 模型,并通过 10 种判别特征对其进行了测试。此外,我们通过遗传算法(GA)对参数进行调整,选择表现最佳的模型进行预测。最后,为了可视化模型的决策能力,我们使用 SHapley Additive exPlanation(SHAP)和 Local Interpretable Model-Agnostic Explanations(LIME)算法来解释特征。研究共纳入 2347 名参与者。
选择最佳的带 GA 的极端梯度提升(XGB)算法来预测高血压患者因 13 种重金属导致的死亡率(AUC 为 0.959;95%置信区间为 0.953-0.965;准确率为 96.8%)。根据 SHAP 值总和,尿液中的镉(0.094)、钴(2.048)、铅(1.12)、钨(0.129),以及血液中的铅(2.026)、汞(1.703)正向影响模型,而尿液中的钡(-0.001)、钼(-2.066)、锑(-0.398)、锡(-0.498)、铊(-2.297),以及血液中的硒(-0.842)、锰(-1.193)则负向影响模型。
我们使用带 SHAP 和 LIME 的高效、稳健且可解释的 GA-XGB 模型预测了高血压患者因重金属暴露导致的死亡率。尿液中的镉、钴、铅、钨和血液中的汞与死亡率呈正相关,而尿液中的钡、钼、锑、锡和铊,以及血液中的铅、硒、锰与死亡率呈负相关。