Han Zhilin, Zhang Yuyang, Ding Wenlong, Zhao Xiaoting, Jia Bingzhen, Liu Tingting, Wan Liang, Xing Zhiheng
Department of radiology, Tianjin Haihe Hospital, TCM Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Haihe Hospital, Tianjin University, Tianjin, China.
Academy of medical engineering and translational medicine, Tianjin University, Tianjin, China.
Sci Data. 2025 Mar 29;12(1):533. doi: 10.1038/s41597-025-04838-8.
The increasing global incidence of nontuberculous mycobacterial (NTM) pulmonary disease highlights the need for rapid diagnostic methods to guide timely treatment and prevent antibiotic misuse. While bacterial culture remains the gold standard for diagnosis, its extended turnaround time compromises clinical decision-making. Computed tomography (CT), with its high sensitivity for lung lesions and rapid imaging capabilities, has emerged as a critical diagnostic tool. AI-assisted CT interpretation shows particular promise for improving NTM detection, yet progress has been hindered by limited datasets due to disease rarity. We address this gap by introducing the first comprehensive CT dataset combining 430 NTM and 871 tuberculosis cases, supplemented with clinical parameters including demographics, symptoms, and mycobacterial species data. This resource aims to catalyze AI algorithm development for differential diagnosis, ultimately enhancing precision in NTM management through advanced machine learning applications.
非结核分枝杆菌(NTM)肺病在全球的发病率不断上升,这凸显了需要快速诊断方法来指导及时治疗并防止抗生素滥用。虽然细菌培养仍是诊断的金标准,但其较长的周转时间不利于临床决策。计算机断层扫描(CT)对肺部病变具有高敏感性且成像速度快,已成为一种关键的诊断工具。人工智能辅助的CT解读在改善NTM检测方面显示出特别的前景,但由于疾病罕见,数据集有限阻碍了进展。我们通过引入首个综合CT数据集来填补这一空白,该数据集结合了430例NTM病例和871例结核病病例,并补充了包括人口统计学、症状和分枝杆菌种类数据在内的临床参数。这一资源旨在推动用于鉴别诊断的人工智能算法开发,最终通过先进的机器学习应用提高NTM管理的精准度。