Aggarwal Arpit, Jana Mayukhmala, Singh Amritpal, Dam Tanmoy, Maurya Himanshu, Pathak Tilak, Orsulic Sandra, Yang Kailin, Chute Deborah, Bishop Justin A, Faraji Farhoud, Thorstad Wade M, Koyfman Shlomo, Steward Scott, Shi Qiuying, Sandulache Vlad, Saba Nabil F, Lewis James S, Corredor Germán, Madabhushi Anant
Department of Biomedical Engineering, Georgia Tech, GA, USA; Department of Biomedical Engineering, Emory University, GA, USA.
Department of Biomedical Engineering, Emory University, GA, USA.
Eur J Cancer. 2025 May 2;220:115390. doi: 10.1016/j.ejca.2025.115390. Epub 2025 Mar 26.
Virtual staining is an artificial intelligence-based approach that transforms pathology images between stain types, such as hematoxylin and eosin (H&E) to immunohistochemistry (IHC), providing a tissue-preserving and efficient alternative to traditional IHC staining. However, existing methods for translating H&E to virtual IHC often fail to generate images of sufficient quality for accurately delineating cell nuclei and IHC+ regions. To address these limitations, we introduce VISTA, an artificial intelligence-based virtual staining platform designed to translate H&E into virtual IHC.
We applied VISTA to identify M2-subtype tumor-associated macrophages (M2-TAMs) in H&E images from 968 patients with HPV+ oropharyngeal squamous cell carcinoma across six institutional cohorts. M2-TAMs are a critical component of the tumor microenvironment, and their increased presence has been linked to poor survival. Co-registered H&E and CD163 + IHC tissue microarrays were used to train (D1, N = 102) and test (D2, N = 50) the VISTA platform. M2-TAM density, defined as the ratio of M2-TAMs to total nuclei, was derived from VISTA-generated CD163 + IHC images and evaluated for prognostic significance in additional training (D3, N = 360) and testing (D4, N = 456) cohorts using biopsy or resection H&E whole slide images.
High M2-TAM density was associated with worse overall survival in D4 (p = 0.0152, Hazard Ratio=1.63 [1.1-2.42]). VISTA outperformed existing methods, generating higher-quality virtual CD163 + IHC images in D2, with a Structural Similarity Index of 0.72, a Peak Signal-to-Noise Ratio of 21.5, and a Fréchet Inception Distance of 41.4. Additionally, VISTA demonstrated superior performance in segmenting M2-TAMs in D2 (Dice=0.74).
These findings establish VISTA as a computational platform for generating virtual IHC and facilitating the discovery of novel biomarkers from H&E images.
虚拟染色是一种基于人工智能的方法,可在不同染色类型之间转换病理图像,如将苏木精和伊红(H&E)染色转换为免疫组织化学(IHC)染色,为传统IHC染色提供了一种既能保留组织又高效的替代方法。然而,现有的将H&E转换为虚拟IHC的方法往往无法生成足够高质量的图像来准确勾勒细胞核和IHC阳性区域。为解决这些局限性,我们引入了VISTA,这是一个基于人工智能的虚拟染色平台,旨在将H&E转换为虚拟IHC。
我们应用VISTA在来自六个机构队列的968例HPV阳性口咽鳞状细胞癌患者的H&E图像中识别M2亚型肿瘤相关巨噬细胞(M2-TAM)。M2-TAM是肿瘤微环境的关键组成部分,其数量增加与生存率低有关。使用共同配准的H&E和CD163免疫组化组织微阵列对VISTA平台进行训练(D1,N = 102)和测试(D2,N = 50)。M2-TAM密度定义为M2-TAM与总细胞核的比例,从VISTA生成的CD163免疫组化图像中得出,并使用活检或切除的H&E全玻片图像在另外的训练(D3,N = 360)和测试(D4,N = 456)队列中评估其预后意义。
在D4队列中,高M2-TAM密度与较差的总生存期相关(p = 0.0152,风险比=1.63 [1.1 - 2.42])。VISTA优于现有方法,在D2队列中生成了更高质量的虚拟CD163免疫组化图像,结构相似性指数为0.72,峰值信噪比为21.5,弗雷歇因ception距离为41.4。此外,VISTA在D2队列中分割M2-TAM方面表现出卓越性能(骰子系数=0.74)。
这些发现确立了VISTA作为一个计算平台,用于生成虚拟IHC并促进从H&E图像中发现新型生物标志物。