Suppr超能文献

基于人工智能的虚拟染色平台,用于从苏木精和伊红染色图像中识别肿瘤相关巨噬细胞。

Artificial intelligence-based virtual staining platform for identifying tumor-associated macrophages from hematoxylin and eosin-stained images.

作者信息

Aggarwal Arpit, Jana Mayukhmala, Singh Amritpal, Dam Tanmoy, Maurya Himanshu, Pathak Tilak, Orsulic Sandra, Yang Kailin, Chute Deborah, Bishop Justin A, Faraji Farhoud, Thorstad Wade M, Koyfman Shlomo, Steward Scott, Shi Qiuying, Sandulache Vlad, Saba Nabil F, Lewis James S, Corredor Germán, Madabhushi Anant

机构信息

Department of Biomedical Engineering, Georgia Tech, GA, USA; Department of Biomedical Engineering, Emory University, GA, USA.

Department of Biomedical Engineering, Emory University, GA, USA.

出版信息

Eur J Cancer. 2025 May 2;220:115390. doi: 10.1016/j.ejca.2025.115390. Epub 2025 Mar 26.

Abstract

BACKGROUND

Virtual staining is an artificial intelligence-based approach that transforms pathology images between stain types, such as hematoxylin and eosin (H&E) to immunohistochemistry (IHC), providing a tissue-preserving and efficient alternative to traditional IHC staining. However, existing methods for translating H&E to virtual IHC often fail to generate images of sufficient quality for accurately delineating cell nuclei and IHC+ regions. To address these limitations, we introduce VISTA, an artificial intelligence-based virtual staining platform designed to translate H&E into virtual IHC.

METHODS

We applied VISTA to identify M2-subtype tumor-associated macrophages (M2-TAMs) in H&E images from 968 patients with HPV+ oropharyngeal squamous cell carcinoma across six institutional cohorts. M2-TAMs are a critical component of the tumor microenvironment, and their increased presence has been linked to poor survival. Co-registered H&E and CD163 + IHC tissue microarrays were used to train (D1, N = 102) and test (D2, N = 50) the VISTA platform. M2-TAM density, defined as the ratio of M2-TAMs to total nuclei, was derived from VISTA-generated CD163 + IHC images and evaluated for prognostic significance in additional training (D3, N = 360) and testing (D4, N = 456) cohorts using biopsy or resection H&E whole slide images.

RESULTS

High M2-TAM density was associated with worse overall survival in D4 (p = 0.0152, Hazard Ratio=1.63 [1.1-2.42]). VISTA outperformed existing methods, generating higher-quality virtual CD163 + IHC images in D2, with a Structural Similarity Index of 0.72, a Peak Signal-to-Noise Ratio of 21.5, and a Fréchet Inception Distance of 41.4. Additionally, VISTA demonstrated superior performance in segmenting M2-TAMs in D2 (Dice=0.74).

CONCLUSION

These findings establish VISTA as a computational platform for generating virtual IHC and facilitating the discovery of novel biomarkers from H&E images.

摘要

背景

虚拟染色是一种基于人工智能的方法,可在不同染色类型之间转换病理图像,如将苏木精和伊红(H&E)染色转换为免疫组织化学(IHC)染色,为传统IHC染色提供了一种既能保留组织又高效的替代方法。然而,现有的将H&E转换为虚拟IHC的方法往往无法生成足够高质量的图像来准确勾勒细胞核和IHC阳性区域。为解决这些局限性,我们引入了VISTA,这是一个基于人工智能的虚拟染色平台,旨在将H&E转换为虚拟IHC。

方法

我们应用VISTA在来自六个机构队列的968例HPV阳性口咽鳞状细胞癌患者的H&E图像中识别M2亚型肿瘤相关巨噬细胞(M2-TAM)。M2-TAM是肿瘤微环境的关键组成部分,其数量增加与生存率低有关。使用共同配准的H&E和CD163免疫组化组织微阵列对VISTA平台进行训练(D1,N = 102)和测试(D2,N = 50)。M2-TAM密度定义为M2-TAM与总细胞核的比例,从VISTA生成的CD163免疫组化图像中得出,并使用活检或切除的H&E全玻片图像在另外的训练(D3,N = 360)和测试(D4,N = 456)队列中评估其预后意义。

结果

在D4队列中,高M2-TAM密度与较差的总生存期相关(p = 0.0152,风险比=1.63 [1.1 - 2.42])。VISTA优于现有方法,在D2队列中生成了更高质量的虚拟CD163免疫组化图像,结构相似性指数为0.72,峰值信噪比为21.5,弗雷歇因ception距离为41.4。此外,VISTA在D2队列中分割M2-TAM方面表现出卓越性能(骰子系数=0.74)。

结论

这些发现确立了VISTA作为一个计算平台,用于生成虚拟IHC并促进从H&E图像中发现新型生物标志物。

相似文献

本文引用的文献

3
Towards a general-purpose foundation model for computational pathology.迈向计算病理学的通用基础模型。
Nat Med. 2024 Mar;30(3):850-862. doi: 10.1038/s41591-024-02857-3. Epub 2024 Mar 19.
4
A visual-language foundation model for computational pathology.用于计算病理学的视觉-语言基础模型。
Nat Med. 2024 Mar;30(3):863-874. doi: 10.1038/s41591-024-02856-4. Epub 2024 Mar 19.
7
Roles of macrophages in tumor development: a spatiotemporal perspective.巨噬细胞在肿瘤发展中的作用:时空视角。
Cell Mol Immunol. 2023 Sep;20(9):983-992. doi: 10.1038/s41423-023-01061-6. Epub 2023 Jul 10.
8
Cancer-associated fibroblasts: from basic science to anticancer therapy.癌相关成纤维细胞:从基础科学到抗癌治疗。
Exp Mol Med. 2023 Jul;55(7):1322-1332. doi: 10.1038/s12276-023-01013-0. Epub 2023 Jul 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验