Cordeiro Gilvânia A, Faria Jessica A, Pavan Leticia, Garcia Israel J P, Neves Eduarda P F I, Lima Gustavo Fernando de Frazao, Campos Hericles M, Ferreira Pâmela Y, Ghedini Paulo C, Kawamoto Elisa M, Lima Maira C, Villar José A F P, Orellana Ana Maria M, Barbosa Leandro A, Scavone Cristoforo, Leite Jacqueline A, Santos Hérica L
Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil.
USP, Universidade de São Paulo, São Paulo, Brazil.
Front Pharmacol. 2025 Mar 14;16:1537720. doi: 10.3389/fphar.2025.1537720. eCollection 2025.
Neuroinflammation, often driven by the overproduction of reactive oxygen species (ROS), plays a crucial role in the pathogenesis of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The susceptibility of the brain to oxidative stress is attributed to its high metabolic activity and limited antioxidant defense. This study aimed to evaluate the neuroprotective potential of Benzylidene Digoxin 15 (BD-15) following treatment and pretreatment in a lipopolysaccharide (LPS)-induced neuroinflammation model. Additionally, we examined whether BD-15 enhances the generation of neurons from neural progenitor cells (NPCs).Male Wistar rats were used for acute treatment studies and divided into four groups: control (saline), BD-15 (100 μg/kg), LPS (250 μg/kg), and LPS + BD-15 (250 μg/kg + 100 μg/kg). Swiss albino mice were used for chronic pretreatment studies and divided into the following groups: control (saline), BD-15 (0.56 mg/kg), LPS (1 mg/kg), and LPS + BD-15 (1 mg/kg + 0.56 mg/kg). Behavioral changes were assessed using the open field test, and brain tissues were analyzed for oxidative stress markers, including malondialdehyde (MDA), reduced glutathione (GSH), protein carbonylation, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST). To assess neurogenesis, primary NPC cultures derived from the hippocampus of newborn Wistar rats were used, which led to reduced locomotor activity and increased oxidative stress, particularly in the cortex, as indicated by elevated MDA levels and reduced GSH levels. BD-15 treatment reversed these effects, notably by restoring GSH levels and reducing protein carbonylation in the cerebellum. Chronic BD-15 treatment in Swiss mice improved oxidative stress markers including MDA, SOD, CAT, and GST. Furthermore, BD-15 exhibits neuroprotective properties by alleviating oxidative stress and motor dysfunction, suggesting its potential as a therapeutic agent for neuroinflammatory disorders. However, BD-15 did not affect NPC cell proliferation, indicating that this cardiotonic steroid did not alter the cell cycle of these progenitor cells.
神经炎症通常由活性氧(ROS)的过度产生所驱动,在阿尔茨海默病和帕金森病等神经退行性疾病的发病机制中起着关键作用。大脑对氧化应激的易感性归因于其高代谢活性和有限的抗氧化防御能力。本研究旨在评估苄叉地高辛15(BD - 15)在脂多糖(LPS)诱导的神经炎症模型中治疗及预处理后的神经保护潜力。此外,我们还研究了BD - 15是否能增强神经祖细胞(NPC)生成神经元的能力。
雄性Wistar大鼠用于急性治疗研究,分为四组:对照组(生理盐水)、BD - 15组(100μg/kg)、LPS组(250μg/kg)和LPS + BD - 15组(250μg/kg + 100μg/kg)。瑞士白化小鼠用于慢性预处理研究,分为以下几组:对照组(生理盐水)、BD - 15组(0.56mg/kg)、LPS组(1mg/kg)和LPS + BD - 15组(1mg/kg + 0.56mg/kg)。使用旷场试验评估行为变化,并分析脑组织中的氧化应激标志物,包括丙二醛(MDA)、还原型谷胱甘肽(GSH)、蛋白质羰基化、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和谷胱甘肽S - 转移酶(GST)。为了评估神经发生,使用了源自新生Wistar大鼠海马体的原代NPC培养物,结果显示运动活性降低,氧化应激增加,特别是在皮质中,表现为MDA水平升高和GSH水平降低。BD - 15治疗逆转了这些效应,特别是通过恢复小脑的GSH水平和减少蛋白质羰基化。瑞士小鼠的慢性BD - 15治疗改善了包括MDA、SOD、CAT和GST在内的氧化应激标志物。此外,BD - 15通过减轻氧化应激和运动功能障碍表现出神经保护特性,表明其作为神经炎症性疾病治疗药物的潜力。然而,BD - 15不影响NPC细胞增殖,这表明这种强心甾体不会改变这些祖细胞的细胞周期。