Suppr超能文献

一种基于深度学习的利用儿童X射线图像进行骨密度测量的自动方法。

An automatic deep learning-based bone mineral density measurement method using X-ray images of children.

作者信息

Zhao Hongye, Zhang Yi, Zhang Wenshuang, Wang Ling, Li Kai, Geng Jian, Cheng Xiaoguang, Wu Tongning

机构信息

China Academy of Information and Communications Technology, Beijing, China.

Key Laboratory of Artificial Intelligence Key Technologies and Applications Evaluation, Ministry of Industry and Information Technology, Beijing, China.

出版信息

Quant Imaging Med Surg. 2025 Mar 3;15(3):2481-2493. doi: 10.21037/qims-24-283. Epub 2025 Feb 11.

Abstract

BACKGROUND

Osteoporosis is a common bone disease characterized by low bone mineral density (BMD). Low BMD screening and early interventions during childhood can significantly decrease osteoporosis risk in adulthood. However, in clinical settings, the applicability of dual-energy X-ray absorptiometry (DXA), a technique to measure standard area BMD (aBMD), cannot adequately meet the diagnostic needs of the majority of the Chinese population. We aimed to achieve a comprehensive evaluation in clinical settings by taking a single X-ray image, which, in conjunction with the use of equivalent step phantoms, can assess bone age or injuries (such as sprains, fractures, or breaks) in the wrist while also measuring aBMD in the forearm, to further evaluate growth and development.

METHODS

In the present study, we used routine X-ray images of the hand and forearm to measure aBMD with step phantom. First, based on the X-ray images, the regions of interest (ROIs) and step phantom used in clinical settings were automatically located and segmented; then, their average grayscale values were calculated. Second, after fitting the linear calibration relationship between the equivalent phantom thickness and grayscale value of the phantom, the effect of soft tissue on aBMD measurement was eliminated using a deep learning method. Finally, aBMD was measured.

RESULTS

Our developed method was validated on 500 X-ray images taken at the clinic and compared with DXA-based aBMD measurements. Experiments revealed that the average correlation coefficient was 0.836.

CONCLUSIONS

The proposed method is an automatic method for measuring aBMD in children by utilizing X-ray images of hand and forearm. Furthermore, our findings suggest the effectiveness of the developed method, which provides a comparable performance to that of clinicians.

摘要

背景

骨质疏松症是一种常见的骨病,其特征为骨矿物质密度(BMD)低。儿童期进行低骨密度筛查和早期干预可显著降低成年后患骨质疏松症的风险。然而,在临床环境中,双能X线吸收法(DXA)这一测量标准面积骨密度(aBMD)的技术的适用性,无法充分满足大多数中国人群的诊断需求。我们旨在通过拍摄单张X线图像在临床环境中实现全面评估,该图像结合使用等效阶梯体模,可评估手腕的骨龄或损伤(如扭伤、骨折或骨裂),同时还能测量前臂的aBMD,以进一步评估生长发育情况。

方法

在本研究中,我们使用手部和前臂的常规X线图像通过阶梯体模测量aBMD。首先,基于X线图像,自动定位并分割临床环境中使用的感兴趣区域(ROI)和阶梯体模;然后,计算它们的平均灰度值。其次,拟合等效体模厚度与体模灰度值之间的线性校准关系后,使用深度学习方法消除软组织对aBMD测量的影响。最后,测量aBMD。

结果

我们开发的方法在诊所拍摄的500张X线图像上得到验证,并与基于DXA的aBMD测量结果进行比较。实验表明平均相关系数为0.836。

结论

所提出的方法是一种利用手部和前臂X线图像自动测量儿童aBMD的方法。此外,我们的研究结果表明所开发方法的有效性,其性能与临床医生相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a11/11948375/ae4ea3c4cde1/qims-15-03-2481-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验