Suppr超能文献

基于多模态融合与去噪扩散模型的睡眠阶段分类

Sleep Stage Classification With Multi-Modal Fusion and Denoising Diffusion Model.

作者信息

Xu Xu, Cong Fengyu, Chen Yongyong, Chen Junxin

出版信息

IEEE J Biomed Health Inform. 2024 Jul 3;PP. doi: 10.1109/JBHI.2024.3422472.

Abstract

Sleep stage classification plays a crucial role in sleep quality assessment and sleep disorder prevention. Nowadays, many studies have developed algorithms for this purpose, but they still face two challenges. The first is noise in physiological signals from various devices. The second challenge is that most studies simply concatenate multi-modal features without considering their correlations. To this end, we propose a framework, namely Diff-SleepNet, to efficiently classify sleep stages from multi-modal input. This framework begins with a diffusion model with peak signal-to-noise ratio (PNSR) loss function that adaptively filters noise. The filtered signals are then transformed into a multi-view spectrum through data pre-processing. These spectra are processed by a transformer-based backbone to extract multi-modal features. The production is fed into the following multi-scale attention module for robust feature fusion. The sleep stage category is finally determined by a fully connected layer. Our framework is trained and validated on three typical datasets, i.e., SHHS, Sleep-EDF-SC, and Sleep-EDF-X. Experimental results demonstrate that it is effective and has advantages over other peer methods.

摘要

睡眠阶段分类在睡眠质量评估和睡眠障碍预防中起着至关重要的作用。如今,许多研究为此开发了算法,但它们仍面临两个挑战。第一个挑战是来自各种设备的生理信号中的噪声。第二个挑战是,大多数研究只是简单地拼接多模态特征,而没有考虑它们之间的相关性。为此,我们提出了一个框架,即Diff-SleepNet,以有效地从多模态输入中对睡眠阶段进行分类。该框架首先是一个具有峰值信噪比(PNSR)损失函数的扩散模型,它可以自适应地过滤噪声。然后,通过数据预处理将滤波后的信号转换为多视图频谱。这些频谱由基于Transformer的主干进行处理,以提取多模态特征。生成的结果被输入到下面的多尺度注意力模块进行稳健的特征融合。睡眠阶段类别最终由一个全连接层确定。我们的框架在三个典型数据集上进行了训练和验证,即SHHS、Sleep-EDF-SC和Sleep-EDF-X。实验结果表明,它是有效的,并且优于其他同类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验