Ribeiro Victoria L, Dos Santos Neidy S S, de Oliveira Raira V S, Carvalho Joselina A, Garcia Viviane V, Brito-Junior Hartmann J S, Usfinit Willibrodus, Pinheiro Mayra, Fill Taicia, Gester Rodrigo, Provasi Patricio F, Canuto Sylvio, Bitencourt Heriberto R, Marinho Patricia S B, Marinho Andrey M R
Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA, Brazil.
Programa de Pós-Graduação em Química, Universidade Federal do Sul e Sudeste do Pará, 68507-590 Marabá, PA, Brazil.
ACS Omega. 2025 Mar 10;10(11):10962-10971. doi: 10.1021/acsomega.4c09074. eCollection 2025 Mar 25.
Chalcones are organic chromophores with diverse biological applications and potential for use in various electronic devices due to their recognized optical properties. This research focuses on the organic synthesis, FT-NMR characterization, and biotransformation of three azachalcones (-) using the fungus, yielding novel compounds (-). In vitro biological assays against Gram-positive and Gram-negative bacteria revealed promising pharmacological potential for these new chromophores. A key structural difference, the interchange of an HC = CH bond by a HC-CH bond, significantly impacts biological and electronic properties. For instance, while biotransformed exhibits similar activity to tetracycline and amoxicillin, compounds and demonstrate a 4-fold and thirty-fold increase in inhibitory activity against Gram-negative , respectively, compared to their parent compounds. Density functional theory calculations suggest that the biotransformation reaction reduces the refractive index (), which may limit its applicability in certain light-handling applications. However, Hyper-Rayleigh scattering calculations indicate that these chromophores exhibit higher nonlinear optical (NLO) responses compared to standard NLO materials such as urea and p-nitroaniline, making them promising candidates for photonic and optoelectronic devices, such as nanostructured circuits. Interestingly, while the original molecules exhibit a dominant dipolar (Φ ) NLO response, the biotransformed compounds, as stable isomers, display a predominant octupolar (Φ ) architecture. These findings highlight the potential of these novel compounds for biotechnological and optoelectronic applications.
查耳酮是一种有机发色团,具有多种生物应用,并且由于其公认的光学特性,有潜力用于各种电子设备。本研究聚焦于三种氮杂查耳酮(-)的有机合成、傅里叶变换核磁共振(FT-NMR)表征以及利用真菌进行的生物转化,从而产生新型化合物(-)。针对革兰氏阳性菌和革兰氏阴性菌的体外生物学试验揭示了这些新型发色团具有可观的药理潜力。一个关键的结构差异,即碳碳双键(HC = CH)被碳碳单键(HC-CH)取代,会显著影响其生物学和电子特性。例如,虽然生物转化后的化合物表现出与四环素和阿莫西林相似的活性,但化合物 和 对革兰氏阴性菌的抑制活性相较于其母体化合物分别提高了4倍和30倍。密度泛函理论计算表明,生物转化反应降低了折射率(),这可能会限制其在某些光处理应用中的适用性。然而,超瑞利散射计算表明,与尿素和对硝基苯胺等标准非线性光学(NLO)材料相比,这些发色团表现出更高的非线性光学响应,使其成为光子和光电器件(如纳米结构电路)的有前途的候选材料。有趣的是,虽然原始分子表现出占主导的偶极(Φ )非线性光学响应,但生物转化后的化合物作为稳定异构体,呈现出占主导的八极(Φ )结构。这些发现突出了这些新型化合物在生物技术和光电子应用方面的潜力。