Suppr超能文献

机器学习在水力压裂中的应用:综述

Application of Machine Learning in Hydraulic Fracturing: A Review.

作者信息

Ma Yulin, Ye Man

机构信息

School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China.

出版信息

ACS Omega. 2025 Mar 14;10(11):10769-10785. doi: 10.1021/acsomega.4c11342. eCollection 2025 Mar 25.

Abstract

Hydraulic fracturing is a widely used technology to increase oil and gas production, and accurate prediction of the postpressure production capacity of hydraulic fracturing is the key to the efficient development of oil and gas fields. However, the multiplicity and asymmetry of reservoir parameters, as well as the high degree of nonlinearity of fluid flow, often make semianalytical modeling and numerical simulation to predict the production behavior a challenge. Based on the research on the application of machine learning (ML) methods in hydraulic fracturing, this paper analyzes the limitations and applicability of classical ML algorithms as well as combinatorial models, summarizes the practical applications of ML in hydraulic fracturing operations, and discusses the ML algorithms to assist hydraulic fracturing analysis and improve hydraulic fracturing production rates. Finally, the development of interpretable modeling methods based on knowledge embedding and knowledge discovery is a challenge and a future direction for fracking research.

摘要

水力压裂是一种广泛应用于提高油气产量的技术,准确预测水力压裂后的产能是油气田高效开发的关键。然而,储层参数的多样性和非对称性,以及流体流动的高度非线性,常常使得通过半解析建模和数值模拟来预测生产行为成为一项挑战。基于对机器学习(ML)方法在水力压裂中应用的研究,本文分析了经典ML算法以及组合模型的局限性和适用性,总结了ML在水力压裂作业中的实际应用,并讨论了用于辅助水力压裂分析和提高水力压裂产量的ML算法。最后,基于知识嵌入和知识发现的可解释建模方法的发展是水力压裂研究面临的挑战和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e6f/11947802/e9733e7561be/ao4c11342_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验