Li Daopeng, Zhang Shengbo, Mao Zhixian, Liu Min, Hu Kui, Zhao Dongnan, Qv Zhengguo, Zhou Li, Shi Tongfei
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
University of Science and Technology of China Hefei 230026 China.
RSC Adv. 2025 Mar 28;15(12):9461-9466. doi: 10.1039/d5ra00860c. eCollection 2025 Mar 21.
The electrocatalytic nitrate reduction reaction (NitRR) is a promising alternative to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction results in poor NH selectivity ( ). Here, a Cu-Co bimetallic catalyst supported on biomass-derived porous carbon (Cu-Co/BPC) is designed and synthesized. Interestingly, the catalyst presents a high NH yield rate of 9114.1 ± 244.8 μg h cm at -1.4 V ( RHE) and a high faradaic efficiency (FE) of 84.5 ± 1.6% at -1.0 V ( RHE). Notably, the of Cu-Co/BPC catalyst is kept above 94.2% under a broad range from -1.0 to -1.4 V ( RHE), indicating the high NitRR-to-NH selectivity of Cu-Co/BPC. The combination of characterization and experimental results indicates that the electron transfer occurs between Cu and Co, and many active sites are generated for adsorption and activation of N[double bond, length as m-dash]O double bonds, and hydrogenation reactions occur with adjacent H protons to improve the selectivity of NH.
电催化硝酸盐还原反应(NitRR)是传统哈伯-博施法的一种有前景的替代方法。然而,竞争性析氢反应导致NH选择性较差( )。在此,设计并合成了一种负载在生物质衍生多孔碳上的Cu-Co双金属催化剂(Cu-Co/BPC)。有趣的是,该催化剂在-1.4 V(相对于可逆氢电极,RHE)时呈现出9114.1±244.8 μg h cm的高NH产率,在-1.0 V(相对于可逆氢电极,RHE)时具有84.5±1.6%的高法拉第效率(FE)。值得注意的是,Cu-Co/BPC催化剂在-1.0至-1.4 V(相对于可逆氢电极,RHE)的宽范围内 保持在94.2%以上,表明Cu-Co/BPC具有高的NitRR到NH选择性。表征和实验结果的结合表明,电子在Cu和Co之间转移,产生许多活性位点用于吸附和活化N=O双键,并与相邻的H质子发生氢化反应以提高NH的选择性。