Suppr超能文献

印度的痴呆症确诊及特定国家临界值的制定:一项机器学习与诊断分析

Dementia ascertainment in India and development of nation-specific cutoffs: A machine learning and diagnostic analysis.

作者信息

Maupin Danny, Gao Hongxin, Nichols Emma, Gross Alden, Meijer Erik, Jin Haomiao

机构信息

School of Health Sciences Faculty of Health and Medical Sciences University of Surrey, Stag Hill University Campus Guildford UK.

Center for Economic and Social Research University of Southern California VPD Los Angeles California USA.

出版信息

Alzheimers Dement (Amst). 2025 Mar 28;17(1):e70049. doi: 10.1002/dad2.70049. eCollection 2025 Jan-Mar.

Abstract

INTRODUCTION

Cognitive assessments are useful in ascertaining dementia but may be influenced by patient characteristics. India's distinct culture and demographics warrant investigation into population-specific cutoffs.

METHODS

Data were utilized from the Longitudinal Aging Study in India-Diagnostic Assessment of Dementia ( = 2528). Dementia ascertainment was conducted by an online panel. A machine learning (ML) model was trained on these classifications, with explainable artificial intelligence to assess feature importance and inform cutoffs that were assessed across demographic groups.

RESULTS

The Informant Questionnaire of Cognitive Decline in the Elderly (IQCODE) and Hindi Mini-Mental State Examination (HMSE) were identified as the most impactful assessments with optimal cutoffs of 3.8 and 25, respectively.

DISCUSSION

An ML assessment of clinician dementia ratings identified IQCODE and HMSE to be the most impactful assessments. Optimal cutoffs of 3.8 and 25 were identified and performed excellently in the overall sample, though did decrease in specific, more difficult-to-diagnose subgroups.

HIGHLIGHTS

Pioneers use of explainable artificial intelligence in the diagnosis of dementia.Creates assessment cutoffs specific to the nation of India.Highlights differences in cutoffs across nations.

摘要

引言

认知评估有助于确定痴呆症,但可能会受到患者特征的影响。印度独特的文化和人口结构需要对特定人群的临界值进行调查。

方法

使用了来自印度纵向老龄化研究——痴呆症诊断评估(n = 2528)的数据。痴呆症的确定由一个在线小组进行。在这些分类的基础上训练了一个机器学习(ML)模型,并使用可解释人工智能来评估特征重要性,并确定在不同人口群体中评估的临界值。

结果

老年人认知能力下降知情者问卷(IQCODE)和印地语简易精神状态检查表(HMSE)被确定为最具影响力的评估,最佳临界值分别为3.8和25。

讨论

对临床医生痴呆症评级的机器学习评估确定IQCODE和HMSE是最具影响力的评估。确定了3.8和25的最佳临界值,在总体样本中表现出色,不过在特定的、更难诊断的亚组中临界值有所降低。

要点

率先在痴呆症诊断中使用可解释人工智能。创建了印度特有的评估临界值。突出了各国临界值的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a528/11952995/5292c2c71726/DAD2-17-e70049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验