Vegué Marina, Allard Antoine, Desrosiers Patrick
Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain.
Département de Physique, de Génie Physique et d'Optique, Université Laval, Québec, Canada.
Netw Neurosci. 2025 Mar 20;9(1):447-474. doi: 10.1162/netn_a_00442. eCollection 2025.
In recurrent networks of leaky integrate-and-fire neurons, the mean-field theory has been instrumental in capturing the statistical properties of neuronal activity, like firing rate distributions. This theory has been applied to networks with either homogeneous synaptic weights and heterogeneous connections per neuron or vice versa. Our work expands mean-field models to include networks with both types of structural heterogeneity simultaneously, particularly focusing on those with synapses that undergo plastic changes. The model introduces a spike trace for each neuron, a variable that rises with neuron spikes and decays without activity, influenced by a degradation rate and the neuron's firing rate . When the ratio = / is significantly high, this trace effectively estimates the neuron's firing rate, allowing synaptic weights at equilibrium to be determined by the firing rates of connected neurons. This relationship is incorporated into our mean-field formalism, providing exact solutions for firing rate and synaptic weight distributions at equilibrium in the high regime. However, the model remains accurate within a practical range of degradation rates, as demonstrated through simulations with networks of excitatory and inhibitory neurons. This approach sheds light on how plasticity modulates both activity and structure within neuronal networks, offering insights into their complex behavior.
在泄漏积分发放神经元的循环网络中,平均场理论有助于捕捉神经元活动的统计特性,如发放率分布。该理论已应用于具有均匀突触权重和每个神经元异质连接的网络,反之亦然。我们的工作将平均场模型扩展到同时包含这两种结构异质性的网络,特别关注那些突触发生可塑性变化的网络。该模型为每个神经元引入了一个脉冲痕迹,这是一个随神经元脉冲上升且在无活动时衰减的变量,受降解率 和神经元发放率 的影响。当比率 = / 显著较高时,此痕迹有效地估计了神经元的发放率,使得平衡时的突触权重可由相连神经元的发放率确定。这种关系被纳入我们的平均场形式体系,为高 regime下平衡时的发放率和突触权重分布提供了精确解。然而,通过兴奋性和抑制性神经元网络的模拟表明,该模型在实际降解率范围内仍保持准确。这种方法揭示了可塑性如何调节神经元网络内的活动和结构,为其复杂行为提供了见解。