Suppr超能文献

超越威尔逊-考恩动力学:无抑制的振荡和混沌。

Beyond Wilson-Cowan dynamics: oscillations and chaos without inhibition.

机构信息

Department of Mathematics and Statistics, McGill University, Sherbrooke Street West, Montreal, QC, H3A 0B6, Canada.

Départment de Mathématiques et de Statistique, Université Laval, Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.

出版信息

Biol Cybern. 2022 Dec;116(5-6):527-543. doi: 10.1007/s00422-022-00941-w. Epub 2022 Sep 5.

Abstract

Fifty years ago, Wilson and Cowan developed a mathematical model to describe the activity of neural populations. In this seminal work, they divided the cells in three groups: active, sensitive and refractory, and obtained a dynamical system to describe the evolution of the average firing rates of the populations. In the present work, we investigate the impact of the often neglected refractory state and show that taking it into account can introduce new dynamics. Starting from a continuous-time Markov chain, we perform a rigorous derivation of a mean-field model that includes the refractory fractions of populations as dynamical variables. Then, we perform bifurcation analysis to explain the occurrence of periodic solutions in cases where the classical Wilson-Cowan does not predict oscillations. We also show that our mean-field model is able to predict chaotic behavior in the dynamics of networks with as little as two populations.

摘要

五十年前,威尔逊和考恩开发了一个数学模型来描述神经元群体的活动。在这项开创性的工作中,他们将细胞分为三组:活跃、敏感和不应期,并得到了一个描述群体平均发放率演变的动力系统。在本工作中,我们研究了经常被忽视的不应期状态的影响,并表明考虑到这一点可以引入新的动力学。我们从连续时间马尔可夫链出发,对包含作为动力学变量的群体不应期分数的平均场模型进行了严格的推导。然后,我们进行分岔分析,以解释在经典威尔逊-考恩模型不预测振荡的情况下周期性解的出现。我们还表明,我们的平均场模型能够预测具有两个群体的网络动力学中的混沌行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/9691500/2156374410ad/422_2022_941_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验