探索机器学习和磁共振成像在早期中风诊断中的潜力:一项文献计量分析(2004 - 2023年)
Exploring the potential of machine learning and magnetic resonance imaging in early stroke diagnosis: a bibliometric analysis (2004-2023).
作者信息
Lou Jian-Cheng, Yu Xiao-Fen, Ying Jian-Jun, Song Da-Qiao, Xiong Wen-Hua
机构信息
Yiwu Hospital of Traditional Chinese Medicine, Yiwu, China.
出版信息
Front Neurol. 2025 Mar 14;16:1505533. doi: 10.3389/fneur.2025.1505533. eCollection 2025.
OBJECTIVE
To examine the focal areas of research in the early diagnosis of stroke through machine learning identification of magnetic resonance imaging characteristics from 2004 to 2023.
METHODS
Data were gathered from the Science Citation Index-Expanded (SCI-E) within the Web of Science Core Collection (WoSCC). Utilizing CiteSpace 6.2.R6, a thorough analysis was conducted, encompassing publications, authors, cited authors, countries, institutions, cited journals, references, and keywords. This investigation covered the period from 2004 to 2023, with the data retrieval completed on December 1, 2023, in a single day.
RESULTS
In total, 395 articles were incorporated into the analysis. Prior to 2015, the annual publication count was under 10, but a significant surge in publications was observed post-2015. Institutions and authors from the USA and China have established themselves as mature academic entities on a global scale, forging extensive collaborative networks with other institutions. High-impact journals in this field predominantly feature in top-tier publications, indicating a consensus in the medical community on the application of machine learning for early stroke diagnosis. "deep learning," "magnetic resonance imaging," and "stroke" emerged as the most attention-gathering keywords among researchers. The development in this field is marked by a coexisting pattern of interdisciplinary integration and refinement within major disciplinary branches.
CONCLUSION
The application of machine learning in the early prediction and personalized medical plans for stroke patients using neuroimaging characteristics offers significant value. The most notable research hotspots currently are the optimal selection of neural imaging markers and the most suitable machine learning algorithm models.
目的
通过机器学习识别2004年至2023年磁共振成像特征来研究中风早期诊断的重点研究领域。
方法
数据收集自科学网核心合集(WoSCC)中的科学引文索引扩展版(SCI-E)。利用CiteSpace 6.2.R6进行了全面分析,包括出版物、作者、被引作者、国家、机构、被引期刊、参考文献和关键词。本调查涵盖2004年至2023年期间,数据检索于2023年12月1日在一天内完成。
结果
总共395篇文章纳入分析。2015年之前,年发表量不足10篇,但2015年之后发表量显著激增。美国和中国的机构及作者在全球范围内已成为成熟的学术实体,与其他机构建立了广泛的合作网络。该领域的高影响力期刊主要集中在顶级出版物中,表明医学界对机器学习用于中风早期诊断已达成共识。“深度学习”“磁共振成像”和“中风”成为研究人员中最受关注的关键词。该领域的发展呈现出跨学科整合与主要学科分支细化并存的模式。
结论
利用神经影像学特征将机器学习应用于中风患者的早期预测和个性化医疗计划具有重要价值。目前最显著的研究热点是神经影像标志物的最佳选择和最合适的机器学习算法模型。