Kang Gyun Ro, Hwang Gui Won, Lim Dohyun, Jeon Seung Hwan, Song Minwoo, Hong Chan-Hwa, Kim Hye Jin, Pang Changhyun
School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Mechanical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
Adv Sci (Weinh). 2025 Jul;12(25):e2500346. doi: 10.1002/advs.202500346. Epub 2025 Mar 31.
Skin-integrated wearable bioelectronics offer immense potential for continuous health monitoring, diagnosis, and personalized therapy. However, robustly repeatable and permeable adhesive interfaces with omnidirectional stretchability for adaptability to continuously deforming skin surface remain a critical challenge and often results in issues such as delamination, void, and signal degradation. This study presents a highly adaptable bioelectronic device with a repeatable, robust and biocompatible adhesive interfaces designed for dynamic wet skin surfaces. The device integrates a conductive softened-double-layered octopus-inspired nanocomposites adhesive and kirigami metastructure (cs-OIA_k). The cs-OIA_k achieves skin-like softness, electrical stability (ΔR/R < 10, under 10 000 cycles) and omnidirectional stretchability (a maximum of 200%) to accommodate skin deformation. Additionally, the hierarchical structural design of cs-OIA_k enables repeatable robust adhesion (> 10 000 cycles) and vertical alignment to ensure reversible adhesion against dynamically deforming surface (-30% to 100%, depending on skin thickness, site, and age) without skin irritation. Based on these characteristics, the highly adaptable skin-adhesive bioelectronics are demonstrated to achieve reliable electrocardiogram (ECG) and electromyogram (EMG) signal measurements even under shoulder movements with extreme skin deformation. This approach utilizing multi-axially stretchable, repeatable robust adhesives, permeable and biocompatible bioelectronics provides new insights for the development of advanced wearable systems and human-machine interfaces.
皮肤集成可穿戴生物电子器件在连续健康监测、诊断和个性化治疗方面具有巨大潜力。然而,要实现具有全向拉伸性的强大可重复且透气的粘合剂界面,以适应不断变形的皮肤表面,仍然是一项关键挑战,并且常常会导致分层、空洞和信号退化等问题。本研究展示了一种高度适应性的生物电子器件,其具有专为动态湿润皮肤表面设计的可重复、坚固且生物相容的粘合剂界面。该器件集成了一种受章鱼启发的导电软化双层纳米复合材料粘合剂和折纸超结构(cs-OIA_k)。cs-OIA_k实现了类似皮肤的柔软度、电稳定性(在10000次循环下,ΔR/R < 10)和全向拉伸性(最大可达200%),以适应皮肤变形。此外,cs-OIA_k的分层结构设计实现了可重复的牢固粘附(> 10000次循环)和垂直排列,以确保在动态变形表面(-30%至100%,取决于皮肤厚度、部位和年龄)上实现可逆粘附且不会引起皮肤刺激。基于这些特性,即使在肩部运动导致皮肤极端变形的情况下,这种高度适应性的皮肤粘附生物电子器件也被证明能够实现可靠的心电图(ECG)和肌电图(EMG)信号测量。这种利用多轴可拉伸、可重复牢固的粘合剂、透气且生物相容的生物电子器件的方法,为先进可穿戴系统和人机界面的发展提供了新的见解。