Suppr超能文献

对时变离散进行建模以改善时间序列设计中环境暴露短期健康效应的估计

Modeling Time-varying Dispersion to Improve Estimation of the Short-term Health Effect of Environmental Exposure in a Time-series Design.

作者信息

Zhang Danlu, Ebelt Stefanie T, Scovronick Noah C, Chang Howard H

机构信息

From the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA.

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA.

出版信息

Epidemiology. 2025 Jul 1;36(4):450-457. doi: 10.1097/EDE.0000000000001856. Epub 2025 Mar 31.

Abstract

BACKGROUND

Time-series models for count outcomes are routinely used to estimate short-term health effects of environmental exposures. The dispersion parameter is universally assumed to be constant over the study period.

OBJECTIVE

The aim is to examine whether dispersion depends on time-varying covariates in a case study of emergency department visits in Atlanta during 1999-2009 and to evaluate approaches for addressing time-varying dispersion.

METHODS

Using the double generalized linear model framework, we jointly modeled the Poisson log-linear mean and dispersion to estimate associations between emergency department visits for respiratory diseases and daily ozone concentrations. We conducted a simulation study to evaluate the impact of time-varying overdispersion on health effect estimation when constant overdispersion is assumed and developed an analytic code for implementing double generalized linear model using R.

RESULTS

We found dispersion to depend on calendar date and meteorology. Assuming constant dispersion, the relative risk (RR) per interquartile range increase in 3-day moving ozone exposure was 1.037 (95% confidence interval: 1.024, 1.050). In the multivariable dispersion model, the RR was reduced to 1.029 (95% confidence interval: 1.020, 1.039), but with a large (26%) reduction in log RR standard error. The positive associations for ozone were robust against different dispersion model specifications. Simulation study results also demonstrated that when time-varying dispersion is present, it can lead to a larger standard error assuming constant dispersion.

CONCLUSION

When the outcome exhibits large dispersion in a time-series analysis, allowing for covariate-dependent time-varying dispersion can improve inference, particularly by increasing estimation precision.

摘要

背景

计数结果的时间序列模型通常用于估计环境暴露的短期健康影响。普遍假定离散参数在研究期间是恒定的。

目的

在一项关于1999 - 2009年亚特兰大急诊科就诊情况的案例研究中,检验离散是否取决于随时间变化的协变量,并评估解决随时间变化的离散的方法。

方法

使用双广义线性模型框架,我们联合对泊松对数线性均值和离散进行建模,以估计呼吸系统疾病急诊科就诊与每日臭氧浓度之间的关联。我们进行了一项模拟研究,以评估在假定恒定离散时随时间变化的过度离散对健康效应估计的影响,并开发了使用R实现双广义线性模型的分析代码。

结果

我们发现离散取决于日历日期和气象条件。假设离散恒定,3天移动臭氧暴露每增加一个四分位数间距的相对风险(RR)为1.037(95%置信区间:1.024,1.050)。在多变量离散模型中,RR降至1.029(95%置信区间:1.020,1.039),但对数RR标准误差大幅降低(26%)。臭氧的正相关关系在不同的离散模型规范下是稳健的。模拟研究结果还表明,当存在随时间变化的离散时,假定恒定离散会导致更大的标准误差。

结论

在时间序列分析中,当结果表现出较大离散时,考虑协变量依赖的随时间变化的离散可以改善推断,特别是通过提高估计精度。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验