School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.
Rollins School of Public Health, Emory University , Atlanta, Georgia 30322, United States.
Environ Sci Technol. 2016 Apr 5;50(7):3695-705. doi: 10.1021/acs.est.5b05134. Epub 2016 Mar 11.
Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology.
研究环境空气污染对健康的影响依赖于完整且准确的时空污染物估计。本文开发了三种方法,用于融合环境监测测量值和 12 公里分辨率的化学输送模型(CMAQ)模拟结果,以估算佐治亚州的每日空气污染物浓度。一种方法通过观测确定时间方差,而年度平均 CMAQ 场则提供空间结构。第二种方法涉及使用平均观测值对每日 CMAQ 模拟场进行缩放,以减少偏差。最后,根据时间方差的预测,基于这些结果的加权平均值为每个 12×12 公里的网格提供了优化的每日估算。这些方法应用于佐治亚州的 12 种污染物(CO、NO2、NOx、O3、SO2、PM10、PM2.5 和 PM2.5 的五种成分)的每日指标,为期七年(2002-2008 年)。交叉验证表明,不同污染物的优化模型性能差异很大,SO2 的预测结果最差,这是由于煤燃烧羽流监测和建模的限制。对于研究的其他污染物,时空方差(交叉验证的 Pearson R²)的 54-88%得到了捕捉,臭氧和 PM2.5 的预测结果最好。开发的优化融合方法提供了与观测、排放和气象数据一致的每日空气污染物浓度和不确定性的空间场估算。