Suppr超能文献

先天性肝纤维化小鼠模型中宿主-微生物组相互作用的多组学分析

Multi-omics analysis of host-microbiome interactions in a mouse model of congenital hepatic fibrosis.

作者信息

Jiao Mengfan, Sun Ye, Dai Zixing, Hou Xiaoxue, Yin Xizhi, Chen Qingling, Liu Rui, Li Yuwen, Zhu Chuanlong

机构信息

Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.

Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China.

出版信息

BMC Microbiol. 2025 Mar 31;25(1):176. doi: 10.1186/s12866-025-03892-x.

Abstract

BACKGROUND

Congenital hepatic fibrosis (CHF) caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene is a rare genetic disorder with poorly understood pathogenesis. We hypothesized that integrating gut microbiome and metabolomic analyses could uncover distinct host-microbiome interactions in CHF mice compared to wild-type controls.

METHODS

Pkhd1 mice were generated using CRISPR/Cas9 technology. Fecal samples were collected from 11 Pkhd1 mice and 10 littermate wild-type controls. We conducted a combined study using 16 S rDNA sequencing for microbiome analysis and untargeted metabolomics. The gut microbiome and metabolome data were integrated using Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO), which helped identify key microbial and metabolic features associated with CHF.

RESULTS

CHF mouse model was successfully established. Our analysis revealed that the genera Mucispirillum, Eisenbergiella, and Oscillibacter were core microbiota in CHF, exhibiting significantly higher abundance in Pkhd1 mice and strong positive correlations among them. Network analysis demonstrated robust associations between the gut microbiome and metabolome. Multi-omics dimension reduction analysis demonstrated that both the microbiome and metabolome could effectively distinguish CHF mice from controls, with area under the curve of 0.883 and 0.982, respectively. A significant positive correlation was observed between the gut microbiome and metabolome, highlighting the intricate relationship between these two components.

CONCLUSION

This study identifies distinct metabolic and microbiome profiles in Pkhd1 mice. Multi-omics analysis effectively differentiates CHF mice from controls and identified potential biomarkers. These findings indicate that gut microbiota and metabolites are integral to the pathogenesis of CHF, offering novel insights into the disease mechanism.

摘要

背景

由多囊肾和肝病1(PKHD1)基因突变引起的先天性肝纤维化(CHF)是一种罕见的遗传疾病,其发病机制尚不清楚。我们推测,与野生型对照相比,整合肠道微生物组和代谢组分析可以揭示CHF小鼠中独特的宿主-微生物组相互作用。

方法

使用CRISPR/Cas9技术生成Pkhd1小鼠。从11只Pkhd1小鼠和10只同窝野生型对照中收集粪便样本。我们使用16S rDNA测序进行微生物组分析和非靶向代谢组学进行联合研究。使用基于潜在成分的生物标志物发现数据整合分析(DIABLO)对肠道微生物组和代谢组数据进行整合,这有助于识别与CHF相关的关键微生物和代谢特征。

结果

成功建立了CHF小鼠模型。我们的分析表明,黏液螺旋菌属、艾氏菌属和颤杆菌属是CHF中的核心微生物群,在Pkhd1小鼠中丰度显著更高,且它们之间呈强正相关。网络分析表明肠道微生物组和代谢组之间存在密切关联。多组学降维分析表明,微生物组和代谢组都能有效区分CHF小鼠和对照,曲线下面积分别为0.883和0.982。观察到肠道微生物组和代谢组之间存在显著正相关,突出了这两个成分之间的复杂关系。

结论

本研究确定了Pkhd1小鼠中独特的代谢和微生物组特征。多组学分析有效地将CHF小鼠与对照区分开来,并识别出潜在的生物标志物。这些发现表明肠道微生物群和代谢产物是CHF发病机制的组成部分,为疾病机制提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6c/11956230/38a9e40ce51e/12866_2025_3892_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验