Suppr超能文献

基于等效均匀剂量(EUD)的乳腺癌放疗肿瘤控制概率(TCP)模型中剂量体积效应参数“a”的优化

Optimization of the Dose-Volume Effect Parameter "a" in EUD-Based TCP Models for Breast Cancer Radiotherapy.

作者信息

Mahmoudi Farshid, Chegeni Nahid, Bagheri Ali, Danyaei Amir, Razzaghi Samira, Arvandi Shole, Saki Malehi Amal, Arjmand Bahare, Shamsi Azin, Mohiuddin Majid

机构信息

School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran.

Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251329103. doi: 10.1177/15330338251329103. Epub 2025 Mar 31.

Abstract

IntroductionRadiotherapy treatment plans traditionally rely on physical indices like Dose-volume histograms and spatial dose distributions. While these metrics assess dose delivery, they lack consideration for the biological effects on tumors and healthy tissues. To address this, radiobiological models like tumor control probability (TCP) and Normal tissue complications probability (NTCP) are increasingly incorporated to evaluate treatment efficacy and potential complications. This study aimed to assess the predictive power of radiobiological models for TCP in breast cancer radiotherapy and provide insights into the model selection and parameter optimization.MethodsIn this retrospective observational study, two commonly used models, the Linear-Poisson and Equivalent uniform dose (EUD)-based models, were employed to calculate TCP for 30 patients. Different radiobiological parameter sets were investigated, including established sets from literature (G and G) and set with an optimized "a" parameter derived from clinical trial data (a and a). Model predictions were compared with clinical outcomes from the START trials.ResultsThe Linear-Poisson model with es lished parameter sets from the literature demonstrated good agreement with clinical data. The standard EUD-based model (a = -7.2) significantly underestimated TCP. While both models exhibited some level of independence from the specific parameter sets (G vs. G), the EUD-based model was susceptible to the "a" parameter value. Optimization suggests a more accurate "a" value closer to -2.57 and -5.65.ConclusionThis study emphasizes the importance of clinically relevant radiobiological parameters for accurate TCP prediction and optimizing the "a" parameter in the EUD-based model based on clinical data (a1 and a2) improved its predictive accuracy significantly.

摘要

引言

传统上,放射治疗计划依赖于诸如剂量体积直方图和空间剂量分布等物理指标。虽然这些指标评估了剂量传递情况,但它们没有考虑对肿瘤和健康组织的生物学效应。为了解决这个问题,越来越多地纳入了诸如肿瘤控制概率(TCP)和正常组织并发症概率(NTCP)等放射生物学模型来评估治疗效果和潜在并发症。本研究旨在评估放射生物学模型对乳腺癌放疗中TCP的预测能力,并为模型选择和参数优化提供见解。

方法

在这项回顾性观察研究中,采用了两种常用模型,即线性泊松模型和基于等效均匀剂量(EUD)的模型,来计算30例患者的TCP。研究了不同的放射生物学参数集,包括文献中已确立的参数集(G和G)以及从临床试验数据中推导出来的具有优化“a”参数的参数集(a和a)。将模型预测结果与START试验的临床结果进行比较。

结果

采用文献中已确立参数集的线性泊松模型与临床数据显示出良好的一致性。基于标准EUD的模型(a = -7.2)显著低估了TCP。虽然两种模型在一定程度上都独立于特定参数集(G与G),但基于EUD的模型对“a”参数值敏感。优化表明更准确的“a”值更接近-2.57和-5.65。

结论

本研究强调了临床相关放射生物学参数对于准确预测TCP的重要性,并且基于临床数据(a1和a2)优化基于EUD的模型中的“a”参数可显著提高其预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4365/11960152/722b2c0119da/10.1177_15330338251329103-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验