Litschel Thomas, Vavylonis Dimitrios, Weitz David A
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Department of Physics, Lehigh University, Bethlehem, PA, USA.
bioRxiv. 2025 Mar 20:2025.03.19.644260. doi: 10.1101/2025.03.19.644260.
The cytoskeletal protein actin forms a spatially organized biopolymer network that plays a central role in many cellular processes. Actin filaments continuously assemble and disassemble, enabling cells to rapidly reorganize their cytoskeleton. Filament severing accelerates actin turnover, as both polymerization and depolymerization rates depend on the number of free filament ends - which severing increases. Here, we use light to control actin severing in vitro by locally generating reactive oxygen species (ROS) with photosensitive molecules such as fluorophores. We see that ROS sever actin filaments, which increases actin polymerization in our experiments. However, beyond a certain threshold, excessive severing leads to the disassembly of actin networks. Our experimental data is supported by simulations using a kinetic model of actin polymerization, which helps us understand the underlying dynamics. In cells, ROS are known to regulate the actin cytoskeleton, but the molecular mechanisms are poorly understood. Here we show that, in vitro, ROS directly affect actin reorganization.
细胞骨架蛋白肌动蛋白形成一个空间组织化的生物聚合物网络,该网络在许多细胞过程中发挥核心作用。肌动蛋白丝持续组装和解聚,使细胞能够快速重组其细胞骨架。由于聚合和解聚速率都取决于游离丝端的数量(切断会增加游离丝端的数量),因此丝切断会加速肌动蛋白周转。在这里,我们利用光通过使用诸如荧光团等光敏分子局部产生活性氧(ROS)来在体外控制肌动蛋白切断。我们发现ROS会切断肌动蛋白丝,这在我们的实验中会增加肌动蛋白聚合。然而,超过一定阈值后,过度切断会导致肌动蛋白网络解体。我们的实验数据得到了使用肌动蛋白聚合动力学模型进行的模拟的支持,这有助于我们理解潜在的动力学。在细胞中,已知ROS会调节肌动蛋白细胞骨架,但分子机制尚不清楚。在这里我们表明,在体外,ROS直接影响肌动蛋白重组。