Cytoskeleton Dynamics and Cell Motility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette Cedex, France.
Curr Biol. 2017 Jul 10;27(13):1990-1998.e5. doi: 10.1016/j.cub.2017.05.036. Epub 2017 Jun 15.
A living cell's ability to assemble actin filaments in intracellular motile processes is directly dependent on the availability of polymerizable actin monomers, which feed polarized filament growth [1, 2]. Continued generation of the monomer pool by filament disassembly is therefore crucial. Disassemblers like actin depolymerizing factor (ADF)/cofilin and filament cappers like capping protein (CP) are essential agonists of motility [3-8], but the exact molecular mechanisms by which they accelerate actin polymerization at the leading edge and filament turnover has been debated for over two decades [9-12]. Whereas filament fragmentation by ADF/cofilin has long been demonstrated by total internal reflection fluorescence (TIRF) [13, 14], filament depolymerization was only inferred from bulk solution assays [15]. Using microfluidics-assisted TIRF microscopy, we provide the first direct visual evidence of ADF's simultaneous severing and rapid depolymerization of individual filaments. Using a conceptually novel assay to directly visualize ADF's effect on a population of pre-assembled filaments, we demonstrate how ADF's enhanced pointed-end depolymerization causes an increase in polymerizable actin monomers, thus promoting faster barbed-end growth. We further reveal that ADF-enhanced depolymerization synergizes with CP's long-predicted "monomer funneling" [16] and leads to skyrocketing of filament growth rates, close to estimated lamellipodial rates. The "funneling model" hypothesized, on thermodynamic grounds, that at high enough extent of capping, the few non-capped filaments transiently grow much faster [15], an effect proposed to be very important for motility. We provide the first direct microscopic evidence of monomer funneling at the scale of individual filaments. These results significantly enhance our understanding of the turnover of cellular actin networks.
活细胞在细胞内运动过程中组装肌动蛋白丝的能力直接取决于聚合肌动蛋白单体的可用性,这些单体为极化丝生长提供养分[1,2]。因此,通过丝解聚不断产生单体池对于维持细胞骨架的动态性是至关重要的。肌动蛋白解聚因子(ADF)/丝切蛋白和肌动蛋白封端蛋白(CP)等解聚酶是运动的关键激动剂[3-8],但它们在前沿处加速肌动蛋白聚合和丝转换的具体分子机制已经争论了二十多年[9-12]。尽管 ADF/cofilin 通过全内反射荧光(TIRF)早已被证明可以片段化肌动蛋白丝[13,14],但只有从批量溶液测定中推断出肌动蛋白丝的解聚[15]。使用微流控辅助 TIRF 显微镜,我们首次提供了 ADF 同时切割和快速解聚单个肌动蛋白丝的直接可视化证据。使用一种新颖的概念性实验来直接观察 ADF 对预先组装的肌动蛋白丝群体的影响,我们证明了 ADF 增强的尖端解聚如何导致聚合物肌动蛋白单体增加,从而促进更快的突刺端生长。我们进一步揭示了 ADF 增强的解聚与 CP 长期预测的“单体漏斗”[16]协同作用,导致丝状生长速率急剧增加,接近片状伪足的估计速率。基于热力学原理,“漏斗模型”假设,在高帽化程度下,少数非帽化的肌动蛋白丝会暂时生长得更快[15],这种效应被认为对运动非常重要。我们提供了在单个肌动蛋白丝尺度上单体漏斗的首个直接微观证据。这些结果大大增强了我们对细胞内肌动蛋白网络周转率的理解。