Suppr超能文献

《国际精神卫生政策与研究杂志》教学论文:心理健康研究中因果推断的加权法

IJMPR Didactic Paper: Weighting for Causal Inference in Mental Health Research.

作者信息

Cohn Eric R, Zubizarreta José R

机构信息

Westat, New York, New York, USA.

Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Int J Methods Psychiatr Res. 2025 Jun;34(2):e70018. doi: 10.1002/mpr.70018.

Abstract

OBJECTIVE

Inverse probability weighting is a fundamental and general methodology for estimating the causal effects of exposures and interventions, but standard approaches to constructing such weights are often suboptimal.

METHODS

In this paper, we describe a recent approach for constructing such weights that directly balances covariates while optimizing the stability of the resulting weighting estimator.

RESULTS

To illustrate the use of this approach in mental health research, we present an exploratory study of the effects of exposure to violence on the risk of suicide attempt.

CONCLUSIONS

The direct balancing approach to weighting should be given strong consideration in empirical research due to its robustness and transparency in building weighting estimators.

摘要

目的

逆概率加权是估计暴露和干预因果效应的一种基本且通用的方法,但构建此类权重的标准方法往往并非最优。

方法

在本文中,我们描述了一种构建此类权重的最新方法,该方法在优化所得加权估计量稳定性的同时直接平衡协变量。

结果

为说明该方法在心理健康研究中的应用,我们展示了一项关于接触暴力对自杀未遂风险影响的探索性研究。

结论

由于直接平衡加权法在构建加权估计量时具有稳健性和透明度,因此在实证研究中应予以充分考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa50/11959416/752c3c9a59b2/MPR-34-e70018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验