Liu Hengyang, Ren Pengcheng, Yuan Yang, Song Chengyun, Luo Fen
IEEE J Biomed Health Inform. 2025 Jan;29(1):433-442. doi: 10.1109/JBHI.2024.3492540. Epub 2025 Jan 7.
In semi-supervised medical image segmentation, the issue of fuzzy boundaries for segmented objects arises. With limited labeled data and the interaction of boundaries from different segmented objects, classifying segmentation boundaries becomes challenging. To mitigate this issue, we propose an uncertainty global contrastive learning (UGCL) framework. Specifically, we propose a patch filtering method and a classification entropy filtering method to provide reliable pseudo-labels for unlabelled data, while separating fuzzy boundaries and high-entropy pixel points as unreliable points. Considering that unreliable regions contain rich complementary information, we introduce an uncertainty global contrast learning method to distinguish these challenging unreliable regions, enhancing intra-class compactness and inter-class separability at the global data level. Within our optimization framework, we also integrate consistency regularization techniques and select unreliable points as targets for consistency. As demonstrated, the contrastive learning and consistency regularization applied to uncertain points enable us to glean valuable semantic information from unreliable data, which enhances segmentation accuracy. We evaluate our method on two publicly available medical image datasets and compare it with other state-of-the-art semi-supervised medical image segmentation methods, and a series of experimental results show that our method has achieved substantial improvements.
在半监督医学图像分割中,分割对象的模糊边界问题随之出现。由于标记数据有限以及不同分割对象边界的相互作用,对分割边界进行分类变得具有挑战性。为了缓解这一问题,我们提出了一种不确定性全局对比学习(UGCL)框架。具体而言,我们提出了一种补丁过滤方法和一种分类熵过滤方法,为未标记数据提供可靠的伪标签,同时将模糊边界和高熵像素点分离为不可靠点。考虑到不可靠区域包含丰富的互补信息,我们引入了一种不确定性全局对比学习方法来区分这些具有挑战性的不可靠区域,在全局数据层面增强类内紧凑性和类间可分离性。在我们的优化框架内,我们还集成了一致性正则化技术,并选择不可靠点作为一致性的目标。结果表明,应用于不确定点的对比学习和一致性正则化使我们能够从不可靠数据中收集有价值的语义信息,从而提高分割精度。我们在两个公开可用的医学图像数据集上评估了我们的方法,并将其与其他最新的半监督医学图像分割方法进行了比较,一系列实验结果表明我们的方法取得了显著改进。