Suppr超能文献

血清中原位金属有机框架生长可封装并消耗丰富蛋白质用于整合血浆蛋白质组学

In Situ Metal-Organic Framework Growth in Serum Encapsulates and Depletes Abundant Proteins for Integrated Plasma Proteomics.

作者信息

Reasoner Emily A, Chan Hsin-Ju, Aballo Timothy J, Plouff Kylie J, Noh Seungwoo, Ge Ying, Jin Song

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.

出版信息

ACS Nano. 2025 Apr 15;19(14):13968-13981. doi: 10.1021/acsnano.4c18028. Epub 2025 Apr 1.

Abstract

Protein biomarkers in human serum provide critical insights into various physiological conditions and diseases, enabling early diagnosis, prognosis, and personalized treatment. However, detecting low-abundance protein biomarkers is challenging due to the presence of highly abundant proteins that make up ∼99% of the plasma proteome. Here, we report the use of in situ metal-organic framework (MOF) growth in serum to effectively deplete highly abundant serum proteins for integrated proteomic analysis. Through biomolecule-mediated nucleation of a zeolitic imidazolate framework (ZIF-8), abundant plasma proteins are selectively encapsulated within ZIF-8 and removed from serum via centrifugation, leaving a depleted protein fraction in the supernatant. Bottom-up proteomics analysis confirmed significant depletion of the topmost abundant proteins, many at depletion levels exceeding 95%. Such depletion enabled the identification of 277 total proteins in the supernatant (uncaptured) fraction in a single-shot analysis, including 54 proteins that were only identified after depletion, 12 drug targets, and many potential disease biomarkers. Top-down proteomics characterization of the captured and uncaptured protein fractions at the proteoform-level confirmed this method is not biased toward any specific proteoform of individual proteins. These results demonstrate that in situ MOF growth can selectively and effectively deplete high-abundance proteins from serum in a simple, low cost, one-pot synthesis to enable integrated top-down and bottom-up proteomic analysis of serum protein biomarkers.

摘要

人血清中的蛋白质生物标志物为各种生理状况和疾病提供了关键见解,有助于早期诊断、预后评估和个性化治疗。然而,由于高丰度蛋白质占血浆蛋白质组的约99%,检测低丰度蛋白质生物标志物具有挑战性。在此,我们报告了利用血清中原位金属有机框架(MOF)生长来有效去除高丰度血清蛋白,以进行综合蛋白质组学分析。通过生物分子介导的沸石咪唑酯框架(ZIF-8)成核,丰富的血浆蛋白被选择性地包裹在ZIF-8中,并通过离心从血清中去除,从而在上清液中留下贫化的蛋白质部分。自下而上的蛋白质组学分析证实,最丰富的蛋白质有显著去除,许多蛋白质的去除率超过95%。这种去除使得在单次分析中能够鉴定上清液(未捕获)部分中的277种总蛋白质,包括54种仅在去除后才鉴定出的蛋白质、12种药物靶点和许多潜在的疾病生物标志物。在蛋白质异构体水平对捕获和未捕获的蛋白质部分进行自上而下的蛋白质组学表征证实,该方法对单个蛋白质的任何特定蛋白质异构体均无偏向性。这些结果表明,原位MOF生长可以通过简单、低成本的一锅合成法从血清中选择性地有效去除高丰度蛋白质,从而实现对血清蛋白质生物标志物的自上而下和自下而上的综合蛋白质组学分析。

相似文献

1
In Situ Metal-Organic Framework Growth in Serum Encapsulates and Depletes Abundant Proteins for Integrated Plasma Proteomics.
ACS Nano. 2025 Apr 15;19(14):13968-13981. doi: 10.1021/acsnano.4c18028. Epub 2025 Apr 1.
2
A simple serum depletion method for proteomics analysis.
Biotechniques. 2020 Aug;69(2):148-151. doi: 10.2144/btn-2020-0017. Epub 2020 May 6.
3
Rat plasma proteomics: effects of abundant protein depletion on proteomic analysis.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Apr 15;849(1-2):273-81. doi: 10.1016/j.jchromb.2006.11.051. Epub 2006 Dec 22.
4
Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery.
Bioanalysis. 2019 Oct;11(19):1799-1812. doi: 10.4155/bio-2019-0145. Epub 2019 Oct 16.
6
Depletion of abundant plasma proteins and limitations of plasma proteomics.
J Proteome Res. 2010 Oct 1;9(10):4982-91. doi: 10.1021/pr100646w.
8
Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum.
Nat Commun. 2020 Aug 6;11(1):3903. doi: 10.1038/s41467-020-17643-1.
9
Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum.
J Chromatogr A. 2008 May 2;1189(1-2):332-8. doi: 10.1016/j.chroma.2007.11.082. Epub 2007 Dec 4.

本文引用的文献

1
Lanthanide Metal-Organic Framework Flowers for Proteome Profiling and Biomarker Identification in Ultratrace Biofluid Samples.
ACS Nano. 2025 Feb 4;19(4):4377-4390. doi: 10.1021/acsnano.4c12280. Epub 2025 Jan 22.
2
Micro scale chromatography of human plasma proteins for nano LC-ESI-MS/MS.
Anal Biochem. 2025 Feb;697:115694. doi: 10.1016/j.ab.2024.115694. Epub 2024 Oct 22.
3
Deep Profiling of Plasma Proteoforms with Engineered Nanoparticles for Top-Down Proteomics.
J Proteome Res. 2024 Oct 4;23(10):4694-4703. doi: 10.1021/acs.jproteome.4c00621. Epub 2024 Sep 23.
4
From Nanozymes to Multi-Purpose Nanomaterials: The Potential of Metal-Organic Frameworks for Proteomics Applications.
Adv Healthc Mater. 2025 Mar;14(8):e2401547. doi: 10.1002/adhm.202401547. Epub 2024 Sep 9.
5
Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure.
Nat Cardiovasc Res. 2022 Dec;1(12):1195-1214. doi: 10.1038/s44161-022-00181-y. Epub 2022 Dec 22.
6
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
7
Top-down proteomics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00318-2. Epub 2024 Jun 13.
9
Direct Imaging of Protein Clusters in Metal-Organic Frameworks.
J Am Chem Soc. 2024 May 8;146(18):12565-12576. doi: 10.1021/jacs.4c01483. Epub 2024 Apr 25.
10
Boosting Enzyme Activity in Enzyme Metal-Organic Framework Composites.
Chem Bio Eng. 2024 Feb 8;1(2):99-112. doi: 10.1021/cbe.3c00091. eCollection 2024 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验