Oliveira Juliane Fonseca, Vasconcelos Adriano O, Alencar Andrêza L, Cunha Maria Célia S L, Marcilio Izabel, Barral-Netto Manoel, P Ramos Pablo Ivan
Center for Data and Knowledge Integration for Health, Gonçalo Moniz Institute, Fundação Oswaldo Cruz, Parque Tecnológico da Edf. Tecnocentro, R. Mundo, 121 - sala 315 - Trobogy, Salvador, 41745-715, Brazil, 55 71 3176 2357.
Luiz Coimbra Institute of Graduate and Engineering Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
JMIR Public Health Surveill. 2025 Apr 1;11:e69048. doi: 10.2196/69048.
Optimizing sentinel surveillance site allocation for early pathogen detection remains a challenge, particularly in ensuring coverage of vulnerable and underserved populations.
This study evaluates the current respiratory pathogen surveillance network in Brazil and proposes an optimized sentinel site distribution that balances Indigenous population coverage and national human mobility patterns.
We compiled Indigenous Special Health District (Portuguese: Distrito Sanitário Especial Indígena [DSEI]) locations from the Brazilian Ministry of Health and estimated national mobility routes by using the Ford-Fulkerson algorithm, incorporating air, road, and water transportation data. To optimize sentinel site selection, we implemented a linear optimization algorithm that maximizes (1) Indigenous region representation and (2) human mobility coverage. We validated our approach by comparing results with Brazil's current influenza sentinel network and analyzing the health attraction index from the Brazilian Institute of Geography and Statistics to assess the feasibility and potential benefits of our optimized surveillance network.
The current Brazilian network includes 199 municipalities, representing 3.6% (199/5570) of the country's cities. The optimized sentinel site design, while keeping the same number of municipalities, ensures 100% coverage of all 34 DSEI regions while rearranging 108 (54.3%) of the 199 cities from the existing flu sentinel system. This would result in a more representative sentinel network, addressing gaps in 9 of 34 previously uncovered DSEI regions, which span 750,515 km² and have a population of 1.11 million. Mobility coverage would improve by 16.8 percentage points, from 52.4% (4,598,416 paths out of 8,780,046 total paths) to 69.2% (6,078,747 paths out of 8,780,046 total paths). Additionally, all newly selected cities serve as hubs for medium- or high-complexity health care, ensuring feasibility for pathogen surveillance.
The proposed framework optimizes sentinel site allocation to enhance disease surveillance and early detection. By maximizing DSEI coverage and integrating human mobility patterns, this approach provides a more effective and equitable surveillance network, which would particularly benefit underserved Indigenous regions.
优化哨点监测点的布局以实现病原体的早期检测仍然是一项挑战,尤其是在确保覆盖弱势群体和服务不足人群方面。
本研究评估了巴西当前的呼吸道病原体监测网络,并提出了一种优化的哨点分布方案,该方案在平衡原住民覆盖率和全国人口流动模式之间取得了平衡。
我们从巴西卫生部收集了原住民特殊卫生区(葡萄牙语:Distrito Sanitário Especial Indígena [DSEI])的位置信息,并使用福特-富尔克森算法结合航空、公路和水路运输数据来估计全国的流动路线。为了优化哨点的选择,我们实施了一种线性优化算法,该算法最大化(1)原住民地区的代表性和(2)人口流动覆盖率。我们通过将结果与巴西当前的流感哨点网络进行比较,并分析巴西地理与统计研究所的健康吸引力指数,来验证我们的方法,以评估优化后的监测网络的可行性和潜在益处。
巴西当前的网络包括199个市,占全国城市的3.6%(199/5570)。优化后的哨点设计在保持市数量不变的情况下,确保了对所有34个DSEI地区的100%覆盖,同时重新安排了现有流感哨点系统中199个城市中的108个(54.3%)。这将形成一个更具代表性的哨点网络,填补了34个先前未覆盖的DSEI地区中9个地区的空白,这些地区面积达750,515平方公里,人口为111万。流动覆盖率将提高16.8个百分点,从52.4%(8,780,046条总路径中的4,598,416条路径)提高到69.2%(8,780,046条总路径中的6,078,747条路径)。此外,所有新选定的城市都是中高复杂性医疗保健的枢纽,确保了病原体监测的可行性。
所提出的框架优化了哨点布局,以加强疾病监测和早期检测。通过最大化DSEI覆盖率并整合人口流动模式,这种方法提供了一个更有效和公平的监测网络,这将特别有利于服务不足的原住民地区。