Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, USA.
Vollum Institute Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, 97239, USA.
Sci Rep. 2021 Jan 22;11(1):2117. doi: 10.1038/s41598-020-80245-w.
Parvalbumin-containing projection neurons of the medial-septum-diagonal band of Broca ([Formula: see text]) are essential for hippocampal rhythms and learning operations yet are poorly understood at cellular and synaptic levels. We combined electrophysiological, optogenetic, and modeling approaches to investigate [Formula: see text] neuronal properties. [Formula: see text] neurons had intrinsic membrane properties distinct from acetylcholine- and somatostatin-containing MS-DBB subtypes. Viral expression of the fast-kinetic channelrhodopsin ChETA-YFP elicited action potentials to brief (1-2 ms) 470 nm light pulses. To investigate [Formula: see text] transmission, light pulses at 5-50 Hz frequencies generated trains of inhibitory postsynaptic currents (IPSCs) in CA1 stratum oriens interneurons. Using a similar approach, optogenetic activation of local hippocampal PV ([Formula: see text]) neurons generated trains of [Formula: see text]-mediated IPSCs in CA1 pyramidal neurons. Both synapse types exhibited short-term depression (STD) of IPSCs. However, relative to [Formula: see text] synapses, [Formula: see text] synapses possessed lower initial release probability, transiently resisted STD at gamma (20-50 Hz) frequencies, and recovered more rapidly from synaptic depression. Experimentally-constrained mathematical synapse models explored mechanistic differences. Relative to the [Formula: see text] model, the [Formula: see text] model exhibited higher sensitivity to calcium accumulation, permitting a faster rate of calcium-dependent recovery from STD. In conclusion, resistance of [Formula: see text] synapses to STD during short gamma bursts enables robust long-range GABAergic transmission from MS-DBB to hippocampus.
富含副甲状腺球蛋白的中隔-斜角带 Broca 投射神经元 ([Formula: see text]) 对于海马体节律和学习操作至关重要,但在细胞和突触水平上的了解甚少。我们结合了电生理、光遗传学和建模方法来研究 [Formula: see text] 神经元的特性。[Formula: see text] 神经元具有与乙酰胆碱和生长抑素含量的 MS-DBB 亚型不同的内在膜特性。快速动力学通道视紫红质 ChETA-YFP 的病毒表达引发了对短暂(1-2 毫秒)470nm 光脉冲的动作电位。为了研究 [Formula: see text] 传递,在 5-50Hz 频率下的光脉冲在 CA1 层状或中间神经元中产生抑制性突触后电流 (IPSCs) 的串。使用类似的方法,局部海马体 PV ([Formula: see text]) 神经元的光遗传学激活在 CA1 锥体神经元中产生了 [Formula: see text] 介导的 IPSCs 的串。这两种突触类型都表现出 IPSC 的短期抑制 (STD)。然而,与 [Formula: see text] 突触相比,[Formula: see text] 突触具有较低的初始释放概率,在伽马 (20-50Hz) 频率下暂时抵抗 STD,并且从突触抑制中更快地恢复。受实验约束的数学突触模型探索了机制差异。与 [Formula: see text] 模型相比,[Formula: see text] 模型对钙积累更敏感,允许更快的钙依赖性从 STD 中恢复。总之,在短伽马爆发期间 [Formula: see text] 突触对 STD 的抵抗力使 MS-DBB 到海马体的强大长程 GABA 能传递成为可能。