Suppr超能文献

机器学习和自然语言处理在心理健康中的应用:系统综述。

Machine Learning and Natural Language Processing in Mental Health: Systematic Review.

机构信息

URCI Mental Health Department, Brest Medical University Hospital, Brest, France.

IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France.

出版信息

J Med Internet Res. 2021 May 4;23(5):e15708. doi: 10.2196/15708.

Abstract

BACKGROUND

Machine learning systems are part of the field of artificial intelligence that automatically learn models from data to make better decisions. Natural language processing (NLP), by using corpora and learning approaches, provides good performance in statistical tasks, such as text classification or sentiment mining.

OBJECTIVE

The primary aim of this systematic review was to summarize and characterize, in methodological and technical terms, studies that used machine learning and NLP techniques for mental health. The secondary aim was to consider the potential use of these methods in mental health clinical practice.

METHODS

This systematic review follows the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines and is registered with PROSPERO (Prospective Register of Systematic Reviews; number CRD42019107376). The search was conducted using 4 medical databases (PubMed, Scopus, ScienceDirect, and PsycINFO) with the following keywords: machine learning, data mining, psychiatry, mental health, and mental disorder. The exclusion criteria were as follows: languages other than English, anonymization process, case studies, conference papers, and reviews. No limitations on publication dates were imposed.

RESULTS

A total of 327 articles were identified, of which 269 (82.3%) were excluded and 58 (17.7%) were included in the review. The results were organized through a qualitative perspective. Although studies had heterogeneous topics and methods, some themes emerged. Population studies could be grouped into 3 categories: patients included in medical databases, patients who came to the emergency room, and social media users. The main objectives were to extract symptoms, classify severity of illness, compare therapy effectiveness, provide psychopathological clues, and challenge the current nosography. Medical records and social media were the 2 major data sources. With regard to the methods used, preprocessing used the standard methods of NLP and unique identifier extraction dedicated to medical texts. Efficient classifiers were preferred rather than transparent functioning classifiers. Python was the most frequently used platform.

CONCLUSIONS

Machine learning and NLP models have been highly topical issues in medicine in recent years and may be considered a new paradigm in medical research. However, these processes tend to confirm clinical hypotheses rather than developing entirely new information, and only one major category of the population (ie, social media users) is an imprecise cohort. Moreover, some language-specific features can improve the performance of NLP methods, and their extension to other languages should be more closely investigated. However, machine learning and NLP techniques provide useful information from unexplored data (ie, patients' daily habits that are usually inaccessible to care providers). Before considering It as an additional tool of mental health care, ethical issues remain and should be discussed in a timely manner. Machine learning and NLP methods may offer multiple perspectives in mental health research but should also be considered as tools to support clinical practice.

摘要

背景

机器学习系统是人工智能领域的一部分,它可以自动从数据中学习模型,从而做出更好的决策。自然语言处理(NLP)通过使用语料库和学习方法,在统计任务(如文本分类或情感挖掘)中提供了良好的性能。

目的

本系统评价的主要目的是总结和描述使用机器学习和 NLP 技术进行心理健康研究的方法和技术方面,次要目的是考虑这些方法在心理健康临床实践中的潜在应用。

方法

本系统评价遵循 PRISMA(系统评价和荟萃分析的首选报告项目)指南,并在 PROSPERO(系统评价前瞻性登记系统;编号 CRD42019107376)中注册。使用 4 个医学数据库(PubMed、Scopus、ScienceDirect 和 PsycINFO)进行搜索,使用以下关键词:机器学习、数据挖掘、精神病学、心理健康和精神障碍。排除标准如下:语言非英语、匿名化过程、案例研究、会议论文和综述。未对出版日期施加任何限制。

结果

共确定了 327 篇文章,其中 269 篇(82.3%)被排除,58 篇(17.7%)被纳入综述。结果通过定性视角进行了组织。尽管研究具有异质性的主题和方法,但出现了一些主题。人群研究可分为 3 类:纳入医学数据库的患者、到急诊室就诊的患者和社交媒体用户。主要目标是提取症状、分类疾病严重程度、比较治疗效果、提供精神病理学线索和挑战当前的分类法。医疗记录和社交媒体是两个主要的数据来源。关于使用的方法,预处理使用了 NLP 的标准方法和专门针对医学文本的唯一标识符提取。首选高效分类器而不是透明功能分类器。Python 是最常用的平台。

结论

机器学习和 NLP 模型近年来在医学领域备受关注,可被视为医学研究的新范式。然而,这些过程往往只是证实临床假设,而不是开发全新的信息,而且只有一类主要人群(即社交媒体用户)是一个不精确的群体。此外,一些特定语言的特征可以提高 NLP 方法的性能,应该更密切地研究将其扩展到其他语言的问题。然而,机器学习和 NLP 技术可以从未开发的数据(即患者的日常习惯,这些习惯通常无法为护理人员所获取)中提供有用的信息。在考虑将其作为心理健康护理的附加工具之前,仍存在伦理问题,应及时进行讨论。机器学习和 NLP 方法可以为心理健康研究提供多种视角,但也应被视为支持临床实践的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/527b/8132982/e791deadeac3/jmir_v23i5e15708_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验