Zhou Guangdi, Huang Haoliang, Wang Fengzhe, Wang Heng, Yang Qishuo, Nie Zihao, Lv Wei, Ding Cui, Li Yueying, Lin Jiayi, Yue Changming, Li Danfeng, Sun Yujie, Lin Junhao, Zhang Guang-Ming, Xue Qi-Kun, Chen Zhuoyu
Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China.
Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518045, China.
Natl Sci Rev. 2024 Nov 27;12(4):nwae429. doi: 10.1093/nsr/nwae429. eCollection 2025 Apr.
In designing material functionalities for transition metal oxides, lattice structure and -orbital occupancy are key determinants. However, the modulation of these two factors is inherently limited by the need to balance thermodynamic stability, growth kinetics and stoichiometry precision, particularly for metastable phases. We introduce a methodology, namely gigantic-oxidative atomic-layer-by-layer epitaxy (GOALL-Epitaxy), to enhance oxidation power by three to four orders of magnitude beyond conventional pulsed laser deposition and oxide molecular beam epitaxy, while ensuring atomic-layer-by-layer growth of the designed complex structures. Thermodynamic stability is markedly augmented with stronger oxidation at elevated temperatures, whereas growth kinetics is sustained by using laser ablation at lower temperatures. We demonstrate the accurate growth of complex nickelates and cuprates-especially an artificially designed structure with alternating single and double NiO layers that possess distinct nominal d-orbital occupancy, as a parent of the high-temperature superconductor. GOALL-Epitaxy enables material discovery within the vastly broadened growth parameter space.
在设计过渡金属氧化物的材料功能时,晶格结构和轨道占据是关键决定因素。然而,这两个因素的调节本质上受到平衡热力学稳定性、生长动力学和化学计量精度的需求限制,特别是对于亚稳相。我们引入了一种方法,即巨氧化原子层逐层外延(GOALL-Epitaxy),将氧化能力提高到比传统脉冲激光沉积和氧化物分子束外延高三到四个数量级,同时确保设计的复杂结构的原子层逐层生长。在高温下通过更强的氧化显著增强了热力学稳定性,而在低温下使用激光烧蚀维持了生长动力学。我们展示了复杂镍酸盐和铜酸盐的精确生长,特别是一种人工设计的具有交替单NiO层和双NiO层的结构,其具有不同的名义d轨道占据,作为高温超导体的母体。GOALL-Epitaxy能够在大大拓宽的生长参数空间内发现材料。